Pravděpodobnostní funkce

Z testwiki
Skočit na navigaci Skočit na vyhledávání
Ukázka grafu pravděpodobnostní funkce. Všechny hodnoty této funkce musí být nezáporné a jejich součet je 1.

Pravděpodobnostní funkce (Šablona:Vjazyce2) je funkce v teorii pravděpodobnosti a statistice, která udává pravděpodobnost, že diskrétní náhodná veličina se přesně rovná nějaké hodnotě[1]. Pravděpodobnostní funkce je často základní prostředek pro definování diskrétního pravděpodobnostního rozdělení, a taková funkce existuje jak pro skalární tak pro vícerozměrnou náhodnou veličinu, jejíž definiční obor je diskrétní.

Pravděpodobnostní funkce se liší od hustoty pravděpodobnosti (Šablona:Vjazyce2) tím, že se týká diskrétní místo spojité náhodné veličiny jako je tomu u hustoty pravděpodobnosti; hodnoty hustoty pravděpodobnosti nejsou pravděpodobnosti jako takové: hustotu pravděpodobnosti je nutné zintegrovat, abychom získali pravděpodobnost.[2]

Formální definice

Pravděpodobnostní funkce poctivé kostky. U všech čísel na kostce je stejná pravděpodobnost, že se při hodu objeví na horní stěně.

Předpokládejme, že X: Ω → A () je diskrétní náhodná veličina definovaná na prostoru elementárních jevů Ω. Pak pravděpodobnostní funkce fX: A → ⟨0, 1⟩ pro X je definovaná jako[3][4]

fX(x)=Pr(X=x)=Pr({ωΩ:X(ω)=x}).

Abychom se vyhnuli chybám, můžeme uvažovat o pravděpodobnosti jako o hmotě, protože fyzická hmota je zachována stejně jako celková pravděpodobnost pro všechny hypotetické výsledky x:

xAfX(x)=1

Když existuje přirozené pořadí mezi hypotézami x, může být pohodlné jim přiřadit numerické hodnoty (nebo n-ticím v případě diskrétní vícerozměrné náhodné veličiny) a uvažovat také hodnoty, které nejsou v obrazu množiny X. To znamená, že funkce fX může být definovaná pro všechna reálná čísla a fX(x) = 0 pro všechna x X(Ω), jak je znázorněno na obrázku.

Protože obraz X je spočetný, pravděpodobnostní funkce fX(x) je nulová pro všechny hodnoty s výjimkou spočetného počtu hodnot x. Nespojitost pravděpodobnostní funkce plyne z faktu, že distribuční funkce diskrétní náhodné veličiny je také nespojitá. Pokud je derivovatelná, její derivace je nula, stejně jako pravděpodobnostní funkce je nulová ve všech takových bodech.

Příklady

Předpokládejme, že Ω je prostor elementárních jevů všech výsledků jediného hodu mincí a X je náhodná veličina definovaná na Ω přiřazením 0 „orlu“ a 1 „hlavě“; jedná se o alternativní rozdělení, které je speciálním případem binomického rozdělení pro počet hodů n=1. Pokud je mince poctivá, pravděpodobnostní funkce je

fX(x)={12,x{0,1},0,x{0,1}.

Příkladem vícerozměrného diskrétního rozdělení a jeho pravděpodobnostní funkce je multinomické rozdělení.

Odkazy

Reference

Šablona:Překlad

Související články

Literatura

  • Johnson, N.L., Kotz, S., Kemp A. (1993) Univariate Discrete Distributions (2nd Edition). Wiley. Šablona:ISBN (p 36)

Šablona:Autoritní data

Šablona:Portály