Vícerozměrná náhodná proměnná

Z testwiki
Skočit na navigaci Skočit na vyhledávání

Vícerozměrná náhodná proměnná nebo náhodný vektor je v teorii pravděpodobnosti a statistice seznam matematických proměnných, jehož žádná hodnota není známa, buď protože zatím nebyla pozorována, nebo protože její hodnotu neznáme přesně. Jednotlivé proměnné jsou sdružené v náhodném vektoru, protože tvoří části jednoho matematického systému – často reprezentují různé vlastnosti určité statistické jednotky. Pokud například chceme zachytit, že každá osoba má určitý věk, výšku a hmotnost, lze tyto vlastnosti blíže neurčené osoby z určité skupiny reprezentovat náhodným vektorem. Prvky náhodných vektorů jsou obvykle reálná čísla.

Náhodné vektory se často používají jako podkladová implementace různých typů agregátů náhodných proměnných, například náhodných matic, náhodných stromů, náhodných posloupností, náhodných procesů apod.

Formálněji vícerozměrná náhodná proměnná je sloupcový vektor 𝐗=(X1,...,Xn)T (nebo řádkový vektor, který je jeho transpozicí), jehož složkami jsou skalární náhodné proměnné, všechny na stejném pravděpodobnostním prostoru (Ω,,P), kde Ω je prostor elementárních jevů, je sigma algebra (kolekce všech událostí) a P je pravděpodobnostní míra (funkce vracející pravděpodobnost každé události).

Pravděpodobnost rozdělení

Hodnoty náhodného vektoru vytváří pravděpodobnostní míru na n s borelovskou algebrou jako podkladovou sigma-algebrou, která definuje sdružené rozdělení pravděpodobnosti, sdružené rozdělení nebo vícerozměrné rozdělení náhodného vektoru.

Rozdělení pravděpodobnosti každé složky náhodného vektoru Xi se nazývají marginální rozdělení. Podmíněné rozdělení pravděpodobnosti Xi pro dané Xj je rozdělení pravděpodobnosti Xi, je-li Xj známé, aby byla určitý hodnota.

Distribuční funkce F𝐗:n0,1 náhodného vektoru 𝐗=(X1,...,Xn)T je definována jako[1]Šablona:Rp

Šablona:Rámeček

kde 𝐱=(x1,...,xn)T.

Operace s náhodnými vektory

S náhodnými vektory lze provádět stejné algebraické operace jako s obyčejnými vektory: sčítání, odčítání, násobení skalárem a skalární součin.

Afinní transformace

Podobně nový náhodný vektor 𝐘 lze definovat aplikací afinní transformace g:nn na náhodný vektor 𝐗:

𝐘=𝒜𝐗+b, kde 𝒜 je matice n×n a b je sloupcový vektor n×1.

Pokud 𝒜 je invertovatelná matice a 𝐗 má hustotu pravděpodobnosti f𝐗, pak hustota pravděpodobnosti 𝐘 je

f𝐘(y)=f𝐗(𝒜1(yb))|det𝒜|.

Invertovatelná zobrazení

Obecněji můžeme studovat invertovatelná zobrazení náhodných vektorů.[2]Šablona:Rp

Nechť g je bijektivní zobrazení z otevřené podmnožiny 𝒟n na podmnožinu n, nechť g má spojité parciální derivace v 𝒟 a nechť Jacobián g není nulový v žádném bodě 𝒟. Předpokládejme, že reálný náhodný vektor 𝐗 má hustotu pravděpodobnosti f𝐗(𝐱) a vyhovuje P(𝐗𝒟)=1. Pak náhodný vektor 𝐘=g(𝐗) má hustotu pravděpodobnosti

f𝐘(𝐲)=f𝐗(𝐱)|detg(𝐱)𝐱||𝐱=g1(𝐲)𝟏(𝐲R𝐘)

kde 𝟏 označuje charakteristickou funkci a množina R𝐘={𝐲=g(𝐱):f𝐗(𝐱)>0} označuje nosič 𝐘.

Střední hodnota

Střední hodnota nebo očekávaná hodnota náhodného vektoru 𝐗 je pevný vektor E[𝐗], jehož prvky jsou střední hodnoty příslušné náhodné proměnné.[3]Šablona:Rp

Šablona:Rámeček Šablona:Clear

Kovariance a křížová kovariance

Definice

Kovarianční matice (také nazývaná druhý centrální moment) náhodného vektoru n×1 je matice, n×n jejíž prvek (i,j) je kovariance mezi i-tou a j-tou náhodnou proměnnou. Kovarianční matice je střední hodnota, prvek po prvku, matice n×n vypočítané jako [𝐗E[𝐗]][𝐗E[𝐗]]T, kde horní index T je transpozice vektoru:[2]Šablona:Rp[3]Šablona:Rp

Šablona:Rámeček

Rozšířením křížová kovarianční matice mezi dvěma náhodnými vektory 𝐗 a 𝐘 (𝐗 s n prvky a 𝐘 s p prvky) je matice n×p[3]Šablona:Rp

Šablona:Rámeček

kde střední hodnota matice se opět bere po složkách. Prvek (i,j) je kovariance mezi i-tým prvkem 𝐗 a j-tým prvkem 𝐘.

Vlastnosti

Kovarianční matice je symetrická matice, tj.[2].Šablona:Rp

K𝐗𝐗T=K𝐗𝐗.

Kovarianční matice je kladně semidefinitní matice, i.e[2].Šablona:Rp

𝐚TK𝐗𝐗𝐚0𝐚n.

Křížová kovarianční matice Cov[𝐘,𝐗] je transpozicí matice Cov[𝐗,𝐘], tj.

K𝐘𝐗=K𝐗𝐘T.

Nekorelovanost

Dva náhodné vektory 𝐗=(X1,...,Xm)T a 𝐘=(Y1,...,Yn)T se nazývají nekorelované, pokud

E[𝐗𝐘T]=E[𝐗]E[𝐘]T.

Jsou nekorelované právě tehdy, když jejich křížová kovarianční matice K𝐗𝐘 je nulová.[3]Šablona:Rp

Korelace a křížová korelace

Definice

Autokorelační matice (také nazývaná druhý moment) náhodného vektoru n×1 je matice n×n, jejíž prvek (i,j) je korelace mezi náhodnými proměnnými i th a j th. Korelační matice je očekávaná hodnota, prvek po prvku, matice n×n vypočítané jako 𝐗𝐗T, kde horní index T znamená transpozici příslušného vektoru:[4]Šablona:Rp[3]Šablona:Rp

Šablona:Rámeček

Rozšířením křížové korelační matice mezi dvěma náhodnými vektory 𝐗 a 𝐘 (𝐗 s n prvky a 𝐘 s p prvky) je matice n×p

Šablona:Rámeček

Vlastnosti

Korelační matice má souvislost s kovarianční matice by

R𝐗𝐗=K𝐗𝐗+E[𝐗]E[𝐗]T.

Podobně pro křížová korelace matice a křížová kovarianční matice:

R𝐗𝐘=K𝐗𝐘+E[𝐗]E[𝐘]T

Ortogonalita

Dva náhodné vektory stejné velikosti 𝐗=(X1,...,Xn)T a 𝐘=(Y1,...,Yn)T se nazývají ortogonální, jestliže

E[𝐗T𝐘]=0.

Nezávislost

Šablona:Podrobně Dva náhodné vektory 𝐗 a 𝐘 se nazývají nezávislé, jestliže pro všechny 𝐱 a 𝐲

F𝐗,𝐘(𝐱,𝐲)=F𝐗(𝐱)F𝐘(𝐲)

kde F𝐗(𝐱) a F𝐘(𝐲) značí kumulativní rozdělení funkce 𝐗 a 𝐘 aF𝐗,𝐘(𝐱,𝐲) označuje jejich sdružené distribuční funkce. Nezávislost 𝐗 a 𝐘 se často značí 𝐗𝐘. Rozepsáno po složkách, o 𝐗 a 𝐘 říkáme, že jsou nezávislé, pokud pro všechny x1,,xm,y1,,yn

FX1,,Xm,Y1,,Yn(x1,,xm,y1,,yn)=FX1,,Xm(x1,,xm)FY1,,Yn(y1,,yn).

Charakteristická funkce

Charakteristická funkce náhodného vektoru 𝐗 s n složkami je funkce n které převádí každý vektor ω=(ω1,,ωn)T na složitý rumber. je definovaný by[2]Šablona:Rp

φ𝐗(ω)=E[ei(ωT𝐗)]=E[ei(ω1X1++ωnXn)].

Další vlastnosti

Střední kvadratická forma

Střední hodnotu kvadratické formy můžeme vyjádřit náhodným vektorem 𝐗 takto:[5]Šablona:Rp

E[𝐗TA𝐗]=E[𝐗]TAE[𝐗]+tr(AK𝐗𝐗),

kde K𝐗𝐗 je kovarianční matice 𝐗 a tr je stopa matice – tj. součet prvků na její hlavní diagonále (shora zleva dolů doprava). Protože kvadratická forma je skalární, bude skalár i její střední hodnota.

Důkaz: Nechť 𝐳 jsou náhodný vektor m×1 s E[𝐳]=μ a Cov[𝐳]=V a nechť A je nestochastická matice m×m.

Pak podle vzorce pro kovarianci, jestliže označíme 𝐳T=𝐗 a 𝐳TAT=𝐘, vidíme, že:

Cov[𝐗,𝐘]=E[𝐗𝐘T]E[𝐗]E[𝐘]T

Tudíž

E[XYT]=Cov[X,Y]+E[X]E[Y]TE[zTAz]=Cov[zT,zTAT]+E[zT]E[zTAT]T=Cov[zT,zTAT]+μT(μTAT)T=Cov[zT,zTAT]+μTAμ,

nyní zbývá pouze ukázat, že

Cov[zT,zTAT]=tr(AV).

To je splněno díky tomu, že můžeme cyklicky permutovat matici bez změny konečného výsledku (např.: tr(AB)=tr(BA)).

Vidíme, že

Cov[zT,zTAT]=E[(zTE(zT))(zTATE(zTAT))T]=E[(zTμT)(zTATμTAT)T]=E[(zμ)T(AzAμ)].

Protože

(zμ)T(AzAμ)

je skalár, pak

(zμ)T(AzAμ)=tr((zμ)T(AzAμ))=tr((zμ)TA(zμ))

triviálně. Při použití permutace dostaneme:

tr((zμ)TA(zμ))=tr(A(zμ)(zμ)T),

a dosazením do původní formule dostaneme:

Cov[zT,zTAT]=E[(zμ)T(AzAμ)]=E[tr(A(zμ)(zμ)T)]=tr(AE((zμ)(zμ)T))=tr(AV).

Střední hodnota součinu dvou různých kvadratických forem

Můžeme vzít střední hodnotu součinu ze dvou různý kvadratických forem náhodný vektor 𝐗 ve vícerozměrném normálním rozdělení s nulovou střední hodnotou takto:[5]Šablona:Rp

E[(𝐗TA𝐗)(𝐗TB𝐗)]=2tr(AK𝐗𝐗BK𝐗𝐗)+tr(AK𝐗𝐗)tr(BK𝐗𝐗)

kde opět K𝐗𝐗 je kovarianční matice 𝐗. Opět, protože obě kvadratické formy jsou skaláry a tedy jejich součin je skalár, střední hodnota jejich součinu je také skalární.

Aplikace

Teorie portfolia

V teorii portfolia ve finančnictví často slouží účelová funkce k výběru portfolia rizikového majetku tak, aby rozdělení výnosu náhodného portfolia mělo požadované vlastnosti. Můžeme například chtít vybrat výnos portfolia, který bude mít nejnižší rozptyl pro danou střední hodnotu. Náhodný vektor je zde vektor 𝐫 náhodných výnosů z určitého majetku a výnos portfolia p (náhodná skalární hodnota) je skalárním součinem vektoru náhodných výnosů s vektorem w vah portfolia – části portfolia alokovaného na příslušný majetek. Protože p = wT𝐫, střední hodnota výnosu portfolia je wTE(𝐫) a rozptyl výnosu portfolia bude wTCw, kde C je kovarianční matice 𝐫.

Teorie regrese

V teorii lineární regrese máme data z n pozorování závislé proměnné y a n pozorování každé z k nezávislých proměnných xj. Pozorování závislých proměnných jsou uspořádána do sloupcového vektoru y; pozorování každé nezávislé proměnné jsou uspořádána do sloupcových vektorů, které tvoří regresní matici X (neznamenající v tomto kontextu náhodný vektor) pozorování nezávislé proměnné. Pak následující regresní rovnice prohlásíme za popis procesu, který generoval data:

y=Xβ+e,

kde β je pevný, ale neznámý vektor k koeficientů odezvy a e je neznámý náhodný vektor odrážející náhodné vlivy na závislou proměnnou. Nějakou zvolenou technikou jako například pomocí obyčejných nejmenších čtverců dostaneme vektor β^, který je odhadem β, pomocí něhož vypočítáme e^, odhad vektoru e

e^=yXβ^.

Statistik pak musí analyzovat vlastnosti β^ a e^, na které pohlížíme jako na náhodné vektory, protože náhodný výběr n pozorovaných případů způsobuje, že budou mít různé hodnoty.

Vektorová časová řada

Vývoj náhodného vektoru k×1 𝐗 v čase lze modelovat jako vektorovou autoregresi (VAR) takto:

𝐗t=c+A1𝐗t1+A2𝐗t2++Ap𝐗tp+𝐞t,

kde vektor pozorování 𝐗ti o i period zpět se nazývá i-té zpoždění 𝐗, c je k × 1 vektor konstant, Ai je časově invariantní matice k × k a 𝐞t je náhodný vektor k × 1 chybových členů.

Odkazy

Reference

Šablona:Překlad

Související články

Šablona:Autoritní data

de:Zufallsvariable#Mehrdimensionale Zufallsvariable pl:Zmienna losowa#Uogólnienia