Stokesova věta
Stokesova věta[1] je věta diferenciální geometrie, která popisuje vztah mezi křivkovým integrálem druhého druhu vektorového pole v prostoru přes hladkou uzavřenou orientovanou křivku a plošným integrálem rotace vektorového pole přes hladkou orientovanou plochu křivkou uzavřenou. Tato věta je speciálním případem tzv. zobecněné Stokesovy věty. Naopak speciálním případem Stokesovy věty v rovině je Greenova věta. Autorem Stokesovy věty je irský fyzik Georg Stokes.
Znění věty

Je-li vektorové pole se spojitými parciálními derivacemi prvního řádu na otevřené jednoduše souvislé po částech hladké kladně orientované ploše ohraničené po částech hladkou jednoduchou uzavřenou kladně orientovanou křivkou , pak platí:
kde je rotace vektorového pole , kde , vyjádřená pomocí operátoru nabla a křivka je orientována tak, že při obíhání po této křivce v kladném smyslu je plocha vždy po levé straně.
Reference
Související články
Externí odkazy
Šablona:Integrální věty vektorového počtu Šablona:Portály Šablona:Autoritní data