Guldinovy věty

Z testwiki
Verze z 7. 4. 2023, 15:12, kterou vytvořil imported>MatSuBot (Úprava rozcestníku za pomoci robota: Plášť - změna odkazu/ů na Plášť (matematika))
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Guldinovy věty (pravidla) umožňují počítat objem a povrch těles vzniklých rotací rovinných obrazců kolem přímky. Zformuloval je švýcarský matematik 17. století Paul Guldin. Guldinovy věty bývají také označovány jako Pappovy (Pappos z Alexandrie byl první, kdo tímto směrem uvažoval).

První věta

První Guldinova věta říká, že objem rotačního tělesa je roven objemu hranolu, jehož podstava má stejný obsah jako rotující obrazec a jehož výška je rovna délce kružnice o poloměru rovném vzdálenosti těžiště rotujícího obrazce od osy rotace. Je-li tedy plocha rotujícího obrazce S a vzdálenost jeho těžiště od osy otáčení yT, pak objem vzniklého rotačního tělesa je určen vztahem

V=2πyTS

Druhá věta

Druhá Guldinova věta říká, že obsah pláště rotačního tělesa je roven obsahu obdélníku, jehož délky stran jsou rovny délce obvodu rotujícího obrazce a délce kružnice o poloměru rovném vzdálenosti těžiště rotujícího obrazce od osy rotace. Je-li tedy délka obvodu rotujícího obrazce l a vzdálenost těžiště rotujícího obrazce od osy otáčení yT, pak plocha rotujícího tělesa má obsah

S=2πyTl

Související články

Externí odkazy

Šablona:Autoritní data

Šablona:Portály