Kvark

Z testwiki
Verze z 22. 7. 2023, 03:42, kterou vytvořil imported>InternetArchiveBot (Robot: Opravuji 1 zdrojů a označuji 0 zdrojů jako nefunkční) #IABot (v2.0.9.5)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání
Proton složený ze dvou „u“ kvarků a jednoho „d“ kvarku

Kvarky jsou podle standardního modelu částicové fyziky elementární částice, ze kterých se skládají hadrony (tedy například protony a neutrony).

Tyto částice mají spin ½ , což znamená, že se jedná o fermiony. Dle standardního modelu částicové fyziky nemají kvarky vnitřní strukturu a jsou spolu s leptony a kalibračními bosony „nejmenší“ známé částice, ze kterých se skládá hmota. Baryony (například proton) se skládají ze tří kvarků, mezony (například pion) se skládají z jednoho kvarku a z jednoho antikvarku.

Teoreticky byly předpovězené roku 1964 Murray Gell-Mannem (a nezávisle na něm i Georgem Zweigem) ve snaze vysvětlit vlastnosti tehdy známých částic,[1] za což roku 1969 dostal Nobelovu cenu za fyziku. Pozdější objevy dalších částic si vyžádaly zavedení dodatečných tří kvarků. V současné době tedy známe šest druhů kvarků.

Historie

Kvarková struktura byla teoreticky předpovězena nezávisle na sobě M. Gell-Mannem a G. Zweigem v roce 1964. O pět let později došlo k potvrzení na lineárním urychlovači SLAC ve Stanfordu při rozptylových experimentech s protony.

Kvarky, které nejsou pozorovány přímo, byly dlouho považovány za teoretický nástroj umožňující objasnit chování hadronů a mezonů. Dnes jsou však již chápány jako reálné částice, přestože je lze teoreticky popsat i jako kvazičástice.[2]

Název kvark pochází z knihy Finnegans Wake (česky Plačky nad Finneganem) od autora Jamese Joyce. Slovo kvark i jednotlivé názvy pochází od Gell-Manna, který k nim nakreslil i ilustrační obrázky.

Již v roce 1974 se objevily první modely počítající s tím, že kvarky se skládají z dalších menších částic, tzv. preonů. Dodnes však pro tyto teorie neexistuje jediná experimentální indicie, kvarky se chovají jako bodové až do rozměrů řádově 10−18 metru a tam je i hranice současných experimentálních možností. Také teoretické koncepty rozpracovávané v současnosti se od preonových teorií liší a potenciální nebodovost kvarků řeší nejčastěji pomocí strun.

Vlastnosti

Kvarky jsou jediné elementární částice, které podléhají všem známým základním interakcím.

Kvarky nelze při nízkých energiích pozorovat jako volné částice (to je důsledek tzv. asymptotické volnosti), ale pouze prostřednictvím rozptylových experimentů a na základě symetrií ve vlastnostech pozorovaných hadronů.

Vysoce energetická srážka hadronů však může způsobit jejich „roztavení“ a vznik tzv. kvark-gluonového plazmatu. V něm se kvarky mohou pohybovat volně. Tento stav hmoty měl být ve vesmíru 20–30 mikrosekund po Velkém třesku a lze jej na extrémně krátkou dobu vytvořit v částicovém urychlovači.

Kvarky se řadí k fermionům se spinem ½ a baryonovým číslem ⅓.

Ke každému kvarku existuje příslušná antičásticeantikvark.

Vůně

Kvarky se rozdělují na šest tzv. vůní.

Symbol Vůně Klidová hmotnost (MeV/c²) Elektrický náboj Izospin (I3) Podivnost Půvab Krása Pravda Antičástice
d dolů (angl. down) 3,5 – 6[3] −⅓ −½ 0 0 0 0 d
u nahoru (angl. up) 1,5 – 3,3[3] +⅔ 0 0 0 0 u
s podivný (angl. strange) 92,4 ± 1,5[4] −⅓ 0 −1 0 0 0 s
c půvabný (angl. charm) 1270Šablona:Su[3] +⅔ 0 0 +1 0 0 c
b spodní (bottom), popř. krásný (angl. beauty) 4200Šablona:Su[3] −⅓ 0 0 0 −1 0 b
t svrchní (top), popř. pravdivý (angl. truth) 174 980 ± 750[5][6][pozn. 1] +⅔ 0 0 0 0 +1 t

Elektrický náboj, izospin, podivnost, půvab, krása a pravda představují kvantová čísla kvarku.

Kvarky řadíme do generací neboli rodin (podobně jako leptony). První generaci tvoří kvarky u a d (tj. nahoru a dolů), druhou generaci tvoří kvarky s a c (tj. podivný a půvabný) a třetí generaci tvoří kvarky b a t (tj. spodní a svrchní).

Barevný náboj

Šablona:Podrobně Každý z kvarků se navíc může vyskytnout ve třech barvách, jimž přiřazujeme hodnoty červená, zelená nebo modrá. Barvy slouží pouze k určitému označení a představují jistý druh náboje (tzv. barevný náboj). Kvarky však ve skutečnosti v žádném případě nemají žádnou barvu, protože jsou mnohem menší než vlnová délka viditelného světla. Barva má v tomto případě podobný význam jako např. elektrický náboj.

Hadrony

Šablona:Viz též Ze tří valenčních kvarků[9] se skládá baryon, a to tak, že každý kvark má jinou barvu, tzn. výsledný baryon je bezbarvý. Baryon tedy může mít hodnotu podivnosti až o velikosti 3. Z kvarku a antikvarku stejné barvy vznikají mezony. Barvy kvarků v mezonu se mění, přičemž pravděpodobnost zachycení kterékoli ze tří barev je stejná, tzn. při sledování mezonu v určitém časovém intervalu se mezon také jeví jako bezbarvý.

Kvarky jsou v hadronech vzájemně vázány prostřednictvím gluonů. Jejich vliv na vlastnosti částic je větší, než se dříve předpokládalo.[10]

Příklady složení částic z kvarků

Exotické hadrony

Jako exotické hadrony se označují nově objevené složené částice:

Mezi exotické hadrony, tedy silně interagující složené částice, se dále řadí i hypotetické částice obsahující kvarky nebo vázané gluonové komplexy:

  • glueballs/gluebally (dříve zvané též gluonia) – exotické hadrony složené pouze z gluonů;[pozn. 2]
  • "hybridní" hadrony, vázané stavy kvarků/antikvarků a (ne virtuálních) gluonů.[pozn. 3]

Neúspěšné bylo dosud také hledání částic složených z leptonů a kvarků jako jedné třídy leptokvarků, hypotetických částic s nenulovým baryonovým i leptonovým číslem.[21]

Odkazy

Poznámky

  1. Hodnota pochází z jednoho experimentu s velkou přesností, provedeném na urychlovači Tevatron ve Fermilabu. Předtím používaná hodnota 173 340 ± 760[7][8] byla o více než směrodatnou odchylku nižší a vycházela ze středování hodnot několika různých méně přesných experimentů ve Fermilabu a na LHC v CERNu - podobné přesnosti bylo u hodnoty dosaženo tímto statistickým vyhodnocením.
  2. Doposud (2015) bylo pozorováno pouze několik kandidátů, které by šlo považovat za glueball/gluonium ve specifických modelech, které jsou v souladu se standardním modelem (např. η(1405), f0(1500), f0(1710)), bez jednoznačného experimentálního potvrzení.[18][19][20]
  3. Dosud (2015) pouze několik kandidátů ve specifických modelech (např. f1(1420) jakožto hybridní mezon qŠablona:Nadtrženog), bez jednoznačného experimentálního potvrzení.[18]

Reference

  1. M. Gell-Mann: A Schematic model of baryons and mesons in Phys. Lett. 8, 1964, 214-215
  2. https://en.wikiversity.org/wiki/Model_of_quark_quasiparticles Šablona:Wayback - Model of quark quasiparticles
  3. 3,0 3,1 3,2 3,3 C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL:http://www-pdg.lbl.gov/2009/tables/rpp2009-sum-quarks.pdf Šablona:Wayback)
  4. Šablona:Citace elektronického periodika
  5. Šablona:Citace elektronického periodika
  6. Šablona:Citace elektronického periodika
  7. Šablona:Citace elektronické monografie
  8. First joint result from LHC and Tevatron experiments. PhysOrg, 19. březen 2014. Dostupné online(anglicky)
  9. http://www2.ph.ed.ac.uk/~playfer/PPlect9.pdf - Valence Quark Model of Hadrons
  10. http://phys.org/news/2016-02-physicists-gluons-contribution-proton.html - Physicists zoom in on gluons' contribution to proton spin
  11. Šablona:Citace elektronického periodika
  12. Šablona:Citace elektronického periodika
  13. Šablona:Citace elektronického periodika
  14. Šablona:Citace elektronické monografie
  15. Šablona:Citace elektronického periodika
  16. Šablona:Citace elektronického periodika
  17. Šablona:Citace elektronického periodika
  18. 18,0 18,1 Šablona:Citace elektronického periodika
  19. Šablona:Citace elektronického periodika
  20. Šablona:Citace elektronického periodika
  21. J. Beringer et al. (Particle Data Group), The Review of Particle Physics. Phys. Rev. D86, 010001 (2012). Oddíl: Leptoquarks (autoři S. Rolli, M. Tanabashi) Šablona:Wayback (anglicky)

Související články

Externí odkazy

Šablona:Částice Šablona:Pahýl Šablona:Autoritní data