Tropický polookruh

Z testwiki
Verze z 19. 5. 2022, 14:48, kterou vytvořil imported>JAnDbot (robot: přidáno {{Autoritní data}}; kosmetické úpravy)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Tropický polookruh je v idempotentní analýze polookruh rozšířených reálných čísel s operacemi minima (nebo maxima) a sčítání, které nahrazují obvyklé („klasické“) operace sčítání a násobení.

Tropický polookruh má různé aplikace (viz tropická analýza), a tvoří základ tropické geometrie. Přívlastek tropický je odkazem na informatika maďarského původu Imre Simona, který zvolil toto pojmenování, protože žil a pracoval v Brazílii.[1]

Definice

Tropický polookruh s minimem (též polookruh min-plus nebo algebra min-plus) je polookruh (ℝ ∪ {+∞}, ⊕, ⊗) s operacemi

xy=min{x,y},
xy=x+y.

Operace ⊕ se nazývá tropické sčítání, operace ⊗ tropické násobení. Jednotkový prvek pro ⊕ je +∞, jednotkový prvek pro ⊗ je 0.

Podobně tropický polookruh s maximem (též polookruh max-plus nebo algebra max-plus) je polookruh (ℝ ∪ {−∞}, ⊕, ⊗) s operacemi

xy=max{x,y},
xy=x+y.

Jednotkový prvek pro ⊕ je −∞, a jednotkový prvek pro ⊗ je 0.

Oba polookruhy jsou vzájemně izomorfní; izomorfismem mezi nimi je negace (obrácení znaménka) xx. Proto lze pracovat jen s jedním z nich a mluvit o něm jednoduše jako o tropickém polookruhu. Různí autoři často v závislosti na oboru použití používají buď tropický polookruh s operací min nebo s operací max.

Tropické sčítání je idempotentní, díky čemuž je tropický polookruh příkladem idempotentního polookruhu.

Tropický polookruh se také nazývá tropická algebra,[2] nesmí se však zaměňovat s asociativní algebrou nad tropickým polookruhem.

Tropické umocňování je definováno obvyklým způsobem jako opakovaný tropický součin (viz umocňování).

Komutativní tělesa s valuací

Operace tropického polookruhu modelují, jak se chovají valuace při sčítání a násobení v komutativním tělese s valuací. Komutativní těleso K reálných čísel s valuací je komutativní těleso opatřené funkcí

v:K{}

které splňuje následující vlastnosti pro všechna a, b v K:

v(a)= právě tehdy, když a=0,
v(ab)=v(a)+v(b)=v(a)v(b),
v(a+b)min{v(a),v(b)}=v(a)v(b), s rovností pokud v(a)v(b).

Valuace v je proto „téměř“ polookruhovým homomorfismem z K do tropického polookruhu, až na to, že vlastnost homomorfismu může selhat, když se sčítají dva prvky se stejnou valuací.

Příklady komutativních těles s valuací:

Odkazy

Reference

Šablona:Překlad

Literatura

Šablona:Autoritní data