Metoda vázaných klastrů

Z testwiki
Skočit na navigaci Skočit na vyhledávání

Metoda vázaných klastrů nebo spřažených klastrů (CC, z angl. Coupled Cluster) je jedna z ab initio metod pro odhad elektronové korelační energie. Tato metoda byla vytvořena v padesátých letech 20. století původně pro potřeby jaderné fyziky. Po jejím přeformulování Jiřím Čížkem [1] se stala více využívanou pro elektronovou korelaci v atomech a molekulách.

Popis

Nejedná se o variační metodu, a proto nekonverguje nutně seshora. Základní rovnicí v metodě CC je

Šablona:Vzorec

kde T^ je excitační (klastrový) operátor, který působí na HF vlnovou funkcí základního stavu Ψ0. Excitační operátor je definován pro N elektronů v molekule takto

Šablona:Vzorec

V případě použití úplného excitačního operátoru získáme exaktní řešení. Pomocí Taylorova rozvoje pro exponenciálu lze pak psát excitační operátor ve tvaru

Šablona:Vzorec

Chceme-li použít metodu CC, provedou se dvě aproximace. Nejprve, namísto použití úplné, a tedy nekonečné báze, se použije konečná báze na vyjádření spin orbitalů v self-konzistentním molekulovém orbitalu. Dostáváme tak k dispozici pouze konečný počet virtuálních orbitalů, které se používají při vytváření excitovaných determinantů. Zadruhé, namísto toho, aby se zahrnuly všechny operátory T^1,,T^N, použijeme pro přiblížení se celkovému operátoru T^, pouze některé z těchto operátorů [2].

Působení excitačního operátoru T^ na Ψ0 generuje lineární kombinaci Slaterových determinantů, ve kterých jsou elektrony z obsazených spinorbitalu excitací dosazeny do virtuálních spinorbitalů. Jednotlivé excitační operátory pak mají tvar

Šablona:Vzorec

Šablona:Vzorec

atd. Slaterův determinant Ψia popisuje monoexcitaci ve které přešel elektron z orbitalu i do orbitalu a, podobně pro biexcitaci pro dva elektrony atd. Koeficienty tia a tijab jsou numerické koeficienty označované jako amplitudy, popisující váhu jednotlivých excitovaných konfigurací, které chceme získat.

Pokud uvažujeme ořezaný excitační operátor jen pro monoexcitace a biexcitace získáme metodu CCSD (z angl. Coupled Cluster Singles Doubles). Výhodou CC je, že s každou úrovní excitace získáme i příspěvek dalších excitací, například pro CCSD získáme trojnásobné excitace, ale i přibližný příspěvek pro čtyřnásobné excitace, čímž získáme větší podíl korelační energie. Toto je dáno tím, že se v rozvoji daném rovnicí (Šablona:Odkaz na vzorec) vyskytují další členy ze součinů excitací, a to pro CCSD následovně

Šablona:Vzorec

Metoda CC je díky tomuto velikostně-konzistentní (z angl. size-consistent), a tedy její přesnost nezávisí na velikosti systému. Pople a kol.[3] definovali velikostně-konzistentní závislost jako

Šablona:Vzorec

tzn., že pokud vezmeme energii dvou systémů nekonečně vzdálených od sebe musí se celková energie rovnat součtu energií jednotlivých systémů. Dále je metoda CC velikostně-extenzivní (z angl. size-exctensivity). Význam velikostní-extenzivity je, že energie roste lineárně s rostoucím počtem částic, a tedy zvětšování systému nezvětšuje korelační chybu, ta je konstantní [4].

Typy

Podle řádu excitace, který je do výpočtu zahrnut jsou odvozeny názvy jednotlivých metod CC, například CCD, CCSD, CCSD(T), CCSDT, CCSDTQ atd. U CCSD(T) písmeno T v závorce značí, že trojnásobné excitace jsou počítány neiterativně [5]. Pro přesnost a správnost výsledku u metody CC je nutné využít dostatečně velkou bázi, aby chyba způsobená použitou konečnou bází nebyla velká, a případně byla eliminovatelná extrapolací do úplné báze.

Reference

Šablona:Autoritní data