Materiálová derivace

Z testwiki
Skočit na navigaci Skočit na vyhledávání

Šablona:Upravit Uvažujme určitou fyzikální veličinu Φ spjatou s hmotnou částicí kontinua, která je obecně proměnná v čase. Podle uvažovaného popisu (lagrangeovského i eulerovského), lze definovat následující derivace:[1]

Lokální derivace

δΦδt=Φ(y,t)t,

kde y značí prostorovou souřadnici. Tato derivace charakterizuje změnu veličiny Φ v pevném bodě prostoru.[1]

Materiálová derivace

DΦDt=Φ(x,t)δt

tato derivace značí změnu Φ dané hmotné částice. V této rovnosti x značí materiálovou souřadnici a je pevné (x=(x1,x2,x3)).[1]

Mezi oběma derivacemi existuje vztah, který získáme užitím transformačního vztahu popisujícího pohyb kontinua a vyjadřujícího časovou závislost mezi oběma souřadnicovými systémy:[1]: yi=yi(x1,x2,x3,t) (uvažujme pouze kartézský souřadnicový systém). Platí[1]

DΦDt=Φ(y,t)t+Φyiyit=Φt+Φyivi,

kde jsme derivaci: yi/t označili, jak je to běžné, jako rychlost dané částice kontinua.

Reference

Šablona:Autoritní data