Afinní geometrie

Z testwiki
Skočit na navigaci Skočit na vyhledávání

Afinní geometrie je typ geometrie, ve které jsou definovány body, vektory a přímky, ale nejsou definovány vzdálenosti, velikosti úhlů ani např. kružnice. Afinní geometrie splňují první, druhý a pátý Eukleidův postulát. Název afinní zavedl Leonhard Euler,[1] jako samostatná disciplína se afinní geometrie chápe od Kleinova Erlangenského programu.[2]

Model pro afinní geometrii je obvykle afinní prostor spolu s množinou afinit. Afinity převádějí přímky na přímky a zachovávají rovnoběžnost a dělicí poměr bodů v přímce. V reálné afinní rovině afinní transformace také zachovávají středy úseček, těžiště trojúhelníků, převádějí elipsy na elipsy, paraboly na paraboly a hyperboly na hyperboly.

Afinní geometrii v rovině je možné zadat také axiomaticky. Důležitou část axiomů tvoří axiomy o existenci rovnoběžek a tvrzení, že paralelnost přímek je relace ekvivalence. [3]

V lineární algebře se dá afinní prostor zkonstruovat z libovolného vektorového prostoru nad tělesem jako jeho afinní rozšíření.[4] Afinní báze afinního prostoru je pevně zvolený bod a (počátek souřadnicové soustavy) a n vektorů v1,v2,,vn, které tvoří bázi příslušného vektorového prostoru. Libovolný bod x je pak možné vyjádřit jednoznačně jako x=a+αivi. Koeficienty αi se nazývají souřadnice bodu x.

Transformace, které zachovávají afinní strukturu, jsou tzv. afinní transformace. Jsou to všechna zobrazení, které se v pevně zvolených souřadnicích dají popsat

xAx+b

kde A je matice a b pevně daný vektor. Jde tedy o složení lineárního zobrazení a posunutí.

Množina všech invertibilních afinních transformací se nazývá afinní grupa. Obsahuje všechna posunutí a regulární lineární zobrazení vektorů.

Afinní geometrii lze dostat z obecnější projektivní geometrie. Jedna nadrovina projektivního prostoru se stane význačnou a afinity jsou pak projektivity zachovávající tuto nadrovinu, tzv. nadrovinu nevlastních bodů (směrů).

Reference

Externí odkazy

Šablona:Pahýl Šablona:Autoritní data