Meneláova věta

Z testwiki
Verze z 5. 1. 2023, 13:08, kterou vytvořil imported>InternetArchiveBot (Robot: Opravuji 1 zdrojů a označuji 0 zdrojů jako nefunkční) #IABot (v2.0.9.2)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání
Příklad přímky EDF v případě, kdy protíná trojúhelník
Příklad přímky EDF v případě, kdy neprotíná trojúhelník

Meneláova věta je tvrzení afinní geometrie o trojúhelnících tradičně připisované starořeckému matematikovi Menelaovi Alexandrijskému. Je duální k Cévově větě.


Znění Meneláovy věty

Máme-li dány body A,B a C, které tvoří trojúhelník ABC, a jiné body D, E a F, které leží na přímkách BC, AC a AB, pak body D, E a F leží na přímce právě tehdy, když platí

AFFBBDDCCEEA=1

V tomto výrazu uvažujeme délky úseček se znaménkem, které je dáno tím, nacházejí-li se body D, E a F uvnitř patřičných úseček, nebo vně. Například podíl AF/FB je kladný právě tehdy, pokud bod F leží na úsečce AB.

Důkaz

Nejdříve ověříme znaménko levé strany a ukážeme, že musí být vždy záporné. To plyne z toho, že přímka buď trojúhelník neprotne vůbec, nebo jej protne právě ve dvou bodech (viz Paschův axiom). Na levé straně je tedy lichý počet záporných zlomků a jejich součin bude vždy záporný.

Spustíme kolmice a, b a c z bodů A, B a C na přímku DEF. Z podobnosti trojúhelníků plyne, že

|AF||BF|=ab
|BD||CD|=bc
|CE||AE|=ca

tedy

|AFFBBDDCCEEA|=|abcabc|=1

Ještě zbývá dokázat, že pokud by body na přímce neležely, pak rovnost neplatí. Uvažujme bod X na přímce AB, který je různý od bodu F. Označme AF, AX a AB po řadě jako n, n', s. Předpokládejme, že rovnost platí i pro X. Pak platí

AFFB=AXXB,

neboli

nsn=nsn,

odkud uvedením na společného jmenovatele a zjednodušením dostaneme n=n. Tedy F=X, čímž je důkaz hotov.

Externí odkazy

Šablona:Autoritní data

Šablona:Portály