Husté uspořádání

Z testwiki
Verze z 3. 9. 2022, 13:21, kterou vytvořil imported>Padkalk (growthexperiments-addlink-summary-summary:2|0|0)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Husté uspořádání je matematický pojem z oboru teorie množin, konkrétněji z teorie uspořádání.
Motivací k zavedení tohoto pojmu je zobecnění vlastností množiny racionálních čísel při běžném uspořádání podle velikosti.

Definice

Řekneme, že ostré lineární uspořádání R na množině A je husté, pokud mezi každé dva různé prvky množiny A lze vložit jiný její prvek (x,yA)(zA)(x<Rz<Ry)

Vlastnosti

Snadno se dá ověřit, že mezi každými dvěma různými prvky hustě uspořádané množiny leží nekonečně mnoho jejích prvků.
Budu-li uvažovat o běžném uspořádání čísel podle velikosti relací <, pak

  • množina všech reálných čísel je hustě uspořádaná
  • každý interval na množině reálných čísel je hustě uspořádaný
  • množina všech racionálních čísel je hustě uspořádaná, stejně jako každý její interval
  • množina přirozených čísel není hustě uspořádaná podle velikosti - například mezi 1 a 2 neexistuje žádné další přirozené číslo

Zajímavé je, že pro spočetné množiny lze při zkoumání vlastností hustých uspořádání vystačit s , jak ukazuje následující věta, vyslovená a dokázaná Georgem Cantorem:

Každá hustě uspořádaná spočetná množina bez nejmenšího a největšího prvku je izomorfní s .

Související články

Šablona:Autoritní data

Šablona:Portály