Soubor:Wave equation 1D fixed endpoints.gif

Z testwiki
Skočit na navigaci Skočit na vyhledávání
Wave_equation_1D_fixed_endpoints.gif (274 × 121 pixelů, velikost souboru: 129 KB, MIME typ: image/gif, ve smyčce, 99 snímků, 4,9 s)

Tento soubor pochází z Wikimedia Commons a mohou ho používat ostatní projekty. Níže jsou zobrazeny informace, které obsahuje jeho tamější stránka s popisem souboru.

Popis

Popis
English: Illustration of solution of one-dimensional wave equation: a gaussian wave on a string fixed at both ends. The wave reflects from each end with a 180° phase shift.
Datum
Zdroj Vlastní dílo
Autor Oleg Alexandrov
GIF vývoj
InfoField
 Tento GIF grafika byl vytvořen programem MATLAB

Licence

Public domain Já, autor tohoto díla, jej tímto uvolňuji jako volné dílo, a to celosvětově.
V některých zemích to není podle zákona možné; v takovém případě:
Poskytuji komukoli právo užívat toto dílo za libovolným účelem, a to bezpodmínečně s výjimkou podmínek vyžadovaných zákonem.

MATLAB source code

% A wave travelling on a string with
% fixed endpoints

function main()

   % KSmrq's colors
   red    = [0.867 0.06 0.14];
   blue   = [0, 129, 205]/256;
   green  = [0, 200,  70]/256;
   yellow = [254, 194,   0]/256;
   white = 0.99*[1, 1, 1];
   
   % length of the string and the grid
   L = 5;
   N = 151;
   X=linspace(0, L, N);

   h = X(2)-X(1); % space grid size
   c = 0.5; % speed of the wave
   tau = 0.25*h/c; % time grid size
   
   K = 5; % steepness of the bump
   S = 0; % shift the wave
   f=inline('exp(-K*(x-S).^2)', 'x', 'S', 'K'); % a gaussian as an initial wave
   df=inline('-2*K*(x-S).*exp(-K*(x-S).^2)', 'x', 'S', 'K'); % derivative of f

   % wave at time 0 and tau
   U0 = 0*f(X, S, K);
   U1 = U0 - 2*tau*c*df(X, S, K);
   
   U = 0*U0; % current U

   Big=10000;
   Ut = zeros(Big, N);
   Ut(1, :) = U0;
   Ut(2, :) = U1;
   
   % hack to capture the first period of the wave
   min_k = 2*N; k_old = min_k; turn_on = 0;

   for j=3:Big

      last_j = j;
      
      %  fixed end points
      U(1)=0; U(N)=0;
      
      % finite difference discretization in time
      for i=2:(N-1)
         U(i) = (c*tau/h)^2*(U1(i+1)-2*U1(i)+U1(i-1)) + 2*U1(i) - U0(i);
      end

      Ut(j, :) = U;
      
      % update info, for the next iteration
      U0 = U1; U1 = U;

      % hack to capture the first period of the wave
      k = find ( abs(U) == max(abs(U)) );
      k = k(1);

      if k > N/2
         turn_on = 1;
      end

      min_k = min(min_k, k_old);
      if k > min_k & min_k == k_old & turn_on == 1
         break;
      end
      k_old = k; 
      
   end

   % truncate to the first period
   last_j = last_j - 1;
   Ut = Ut(1:last_j, :);

  % shift the wave by a certain amount
   shift = floor(last_j/4);
   Vt=Ut;
   Ut((last_j-shift+1):last_j, :) = Vt(1:shift, :);
   Ut(1:(last_j-shift), :)        = Vt((shift+1):last_j, :);

   num_frames = 100;
   spacing=floor(last_j/num_frames)
   
   % plot the wave
   for j=1:(last_j-spacing+1)

      U = Ut(j, :);

      if rem(j, spacing) == 1

         figure(1); clf; hold on;
         axis equal; axis off; 
         lw = 3; % linewidth
         plot(X, U, 'color', red, 'linewidth', lw);
	 
         % plot the ends of the string
         small_rad = 0.06;
         ball(0, 0, small_rad, red);
         ball(L, 0, small_rad, red);
	 
         % size of the window
         ys = 1.1;
         axis([-small_rad, L+small_rad, -ys, ys]);
      
         % small markers to keep the bounding box fixed when saving to eps
         plot(-small_rad, ys, '*', 'color', white);
         plot(L+small_rad, -ys, '*', 'color', white);

         frame_no = floor(j/spacing)+1;
         frame=sprintf('Frame%d.eps', 1000+frame_no);
         disp(frame)
         saveas(gcf, frame, 'psc2');
         
      end
   end
   
function ball(x, y, radius, color) % draw a ball of given uniform color 
   Theta=0:0.1:2*pi;
   X=radius*cos(Theta)+x;
   Y=radius*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);

% The gif image was creating with the command 
% convert -antialias -loop 10000  -delay 15 -compress LZW Frame10* Movie.gif

Popisky

Přidejte jednořádkové vysvětlení, co tento soubor představuje
One-dimensional wave equation

Položky vyobrazené v tomto souboru

zobrazuje

Historie souboru

Kliknutím na datum a čas se zobrazí tehdejší verze souboru.

Datum a časNáhledRozměryUživatelKomentář
současná24. 8. 2007, 02:27Náhled verze z 24. 8. 2007, 02:27274 × 121 (129 KB)wikimediacommons>Oleg Alexandrov{{Information |Description=Illustration of en:Wave equation |Source=self-made, with en:Matlab |Date=~~~~~ |Author= Oleg Alexandrov }} {{PD-self}} Category:Waves Category:Partial differential equations [[Catego

Tento soubor používá následující stránka: