Soubor:Color complex plot.jpg
Z testwiki
Skočit na navigaci
Skočit na vyhledávání
Velikost tohoto náhledu: 600 × 600 pixelů. Jiná rozlišení: 240 × 240 pixelů | 480 × 480 pixelů.
Původní soubor (800 × 800 pixelů, velikost souboru: 203 KB, MIME typ: image/jpeg)
Tento soubor pochází z Wikimedia Commons a mohou ho používat ostatní projekty. Níže jsou zobrazeny informace, které obsahuje jeho tamější stránka s popisem souboru.
Popis
| PopisColor complex plot.jpg | Color plot of complex function (x^2-1) * (x-2-I)^2 / (x^2+2+2I), hue represents the argument, sat and value represents the modulus |
| Datum | |
| Zdroj | Vlastní dílo |
| Autor | Claudio Rocchini |
| Svolení (Užití tohoto souboru) |
CC-BY 2.5 |
| Další verze |
|
Source Code
C++
This is the complete C++ source code for image generation (you must change the fun funcion to plot another one). You need some complex class implementation.
#include <complex>
#include <fstream>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
const double E = 2.7182818284590452353602874713527;
void SetHSV(double h, double s, double v, unsigned char color[3]) {
double r, g, b;
if(s==0)
r = g = b = v;
else {
if(h==1) h = 0;
double z = floor(h*6); int i = int(z);
double f = double(h*6 - z);
double p = v*(1-s);
double q = v*(1-s*f);
double t = v*(1-s*(1-f));
switch(i){
case 0: r=v; g=t; b=p; break;
case 1: r=q; g=v; b=p; break;
case 2: r=p; g=v; b=t; break;
case 3: r=p; g=q; b=v; break;
case 4: r=t; g=p; b=v; break;
case 5: r=v; g=p; b=q; break;
}
}
int c;
c = int(256*r); if(c>255) c = 255; color[0] = c;
c = int(256*g); if(c>255) c = 255; color[1] = c;
c = int(256*b); if(c>255) c = 255; color[2] = c;
}
complex<double> fun(complex<double>& c ){
const complex<double> i(0., 1.);
return (pow(c,2) -1.) *pow(c -2. -i, 2) /(pow(c,2) +2. +2. *i);
}
int main(){
const int dimx = 800; const int dimy = 800;
const double rmi = -3; const double rma = 3;
const double imi = -3; const double ima = 3;
ofstream f("complex.ppm", ios::binary);
f << "P6" << endl
<< dimx << " " << dimy << endl
<< "255" << endl;
for(int j=0; j < dimy; ++j){
double im = ima - (ima -imi) *j /(dimy -1);
for(int i=0; i < dimx; ++i){
double re = rma -(rma -rmi) *i /(dimx -1);
complex<double> c(re, im);
complex<double> v = fun(c);
double a = arg(v);
while(a<0) a += 2*PI; a /= 2*PI;
double m = abs(v);
double ranges = 0;
double rangee = 1;
while(m>rangee){
ranges = rangee;
rangee *= E;
}
double k = (m-ranges)/(rangee-ranges);
double sat = k < 0.5 ? k *2: 1 -(k -0.5) *2;
sat = 1 - pow(1-sat, 3); sat = 0.4 + sat*0.6;
double val = k < 0.5 ? k *2: 1 -(k -0.5) *2; val = 1 - val;
val = 1 - pow(1-val, 3); val = 0.6 + val*0.4;
unsigned char color[3];
SetHSV(a,sat,val,color);
f.write((const char*)color,3);
}
}
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>// floor
/*
based on
c++ program from :
[[:File:Color_complex_plot.jpg]]
by Claudio Rocchini
gcc d.c -lm -Wall
http://en.wikipedia.org/wiki/Domain_coloring
*/
const double PI = 3.1415926535897932384626433832795;
const double E = 2.7182818284590452353602874713527;
/*
complex domain coloring
Given a complex number z=re^{ i \theta},
hue represents the argument ( phase, theta ),
sat and value represents the modulus
*/
int GiveHSV( double complex z, double HSVcolor[3] )
{
//The HSV, or HSB, model describes colors in terms of hue, saturation, and value (brightness).
// hue = f(argument(z))
//hue values range from .. to ..
double a = carg(z); //
while(a<0) a += 2*PI; a /= 2*PI;
// radius of z
double m = cabs(z); //
double ranges = 0;
double rangee = 1;
while(m>rangee){
ranges = rangee;
rangee *= E;
}
double k = (m-ranges)/(rangee-ranges);
// saturation = g(abs(z))
double sat = k<0.5 ? k*2: 1 - (k-0.5)*2;
sat = 1 - pow( (1-sat), 3);
sat = 0.4 + sat*0.6;
// value = h(abs(z))
double val = k<0.5 ? k*2: 1 - (k-0.5)*2;
val = 1 - val;
val = 1 - pow( (1-val), 3);
val = 0.6 + val*0.4;
HSVcolor[0]= a;
HSVcolor[1]= sat;
HSVcolor[2]= val;
return 0;
}
int GiveRGBfromHSV( double HSVcolor[3], unsigned char RGBcolor[3] ) {
double r,g,b;
double h; double s; double v;
h=HSVcolor[0]; // hue
s=HSVcolor[1]; // saturation;
v = HSVcolor[2]; // = value;
if(s==0)
r = g = b = v;
else {
if(h==1) h = 0;
double z = floor(h*6);
int i = (int)z;
double f = (h*6 - z);
double p = v*(1-s);
double q = v*(1-s*f);
double t = v*(1-s*(1-f));
switch(i){
case 0: r=v; g=t; b=p; break;
case 1: r=q; g=v; b=p; break;
case 2: r=p; g=v; b=t; break;
case 3: r=p; g=q; b=v; break;
case 4: r=t; g=p; b=v; break;
case 5: r=v; g=p; b=q; break;
}
}
int c;
c = (int)(256*r); if(c>255) c = 255; RGBcolor[0] = c;
c = (int)(256*g); if(c>255) c = 255; RGBcolor[1] = c;
c = (int)(256*b); if(c>255) c = 255; RGBcolor[2] = c;
return 0;
}
int GiveRGBColor( double complex z, unsigned char RGBcolor[3])
{
static double HSVcolor[3];
GiveHSV( z, HSVcolor );
GiveRGBfromHSV(HSVcolor,RGBcolor);
return 0;
}
//
double complex fun(double complex c ){
return (cpow(c,2)-1)*cpow(c-2.0- I,2)/(cpow(c,2)+2+2*I);} //
int main(){
// screen (integer ) coordinate
const int dimx = 800; const int dimy = 800;
// world ( double) coordinate
const double reMin = -2; const double reMax = 2;
const double imMin = -2; const double imMax = 2;
static unsigned char RGBcolor[3];
FILE * fp;
char *filename ="complex.ppm";
fp = fopen(filename,"wb");
fprintf(fp,"P6\n%d %d\n255\n",dimx,dimy);
int i,j;
for(j=0;j<dimy;++j){
double im = imMax - (imMax-imMin)*j/(dimy-1);
for(i=0;i<dimx;++i){
double re = reMax - (reMax-reMin)*i/(dimx-1);
double complex z= re + im*I; //
double complex v = fun(z); //
GiveRGBColor( v, RGBcolor);
fwrite(RGBcolor,1,3,fp);
}
}
fclose(fp);
printf("OK - file %s saved\n", filename);
return 0;
}
Licence
Já, držitel autorských práv k tomuto dílu, ho tímto zveřejňuji za podmínek následujících licencí:
| Tento dokument smí být kopírován, šířen nebo upravován podle podmínek Svobodné licence GNU pro dokumenty verze 1.2 nebo libovolné vyšší verze publikované nadací Free Software Foundation. Dokument nemá neměnné části ani texty na předním či zadním přebalu. Kopie textu licence je k dispozici v oddíle nazvaném GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
| Tento soubor podléhá licenci Creative Commons Uveďte autora-Zachovejte licenci 3.0 Unported. | ||
| ||
| Tato licenční šablona byla k tomuto souboru přidána v rámci změny licencování.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue |
Tento soubor podléhá licenci Creative Commons Uveďte autora 2.5 Generic
- Dílo smíte:
- šířit – kopírovat, distribuovat a sdělovat veřejnosti
- upravovat – pozměňovat, doplňovat, využívat celé nebo částečně v jiných dílech
- Za těchto podmínek:
- uveďte autora – Máte povinnost uvést autorství, poskytnout odkaz na licenci a uvést, pokud jste provedli změny. Toho můžete docílit jakýmkoli rozumným způsobem, avšak ne způsobem naznačujícím, že by poskytovatel licence schvaloval nebo podporoval vás nebo vaše užití díla.
Můžete si zvolit libovolnou z těchto licencí.
Popisky
Přidejte jednořádkové vysvětlení, co tento soubor představuje
Color wheel graph of the function f(x) = (x^2 − 1)(x + 2 − i)2 / (x^2 + 2 - 2i).
Položky vyobrazené v tomto souboru
zobrazuje
Nějaká hodnota bez položky na Wikidatech
7. 8. 2007
image/jpeg
c0f2c797263ef24ef3cb2d39a22f86ee3e4ca071
208 178 bajt
800 pixel
800 pixel
Historie souboru
Kliknutím na datum a čas se zobrazí tehdejší verze souboru.
| Datum a čas | Náhled | Rozměry | Uživatel | Komentář | |
|---|---|---|---|---|---|
| současná | 23. 3. 2013, 00:06 | 800 × 800 (203 KB) | wikimediacommons>Yourmomblah | Higher quality |
Využití souboru
Tento soubor používá následující stránka:
