Rekurzivní bayesovský odhad
Šablona:Upravit Šablona:Neověřeno
Rekurzivní bayesovský odhad (též bayesovský filtr) je v informatice označení pro obecný pravděpodobnostní rekurzivní přístup v čase k odhadu neznámé funkce míry pravděpodobnosti využívající měření příchozích dat a matematického modelování tohoto procesu.
V robotice
Bayesovský filtr je algoritmus využívaný v informatice pro výpočet možností na základě pravděpodobnosti, které dovolují robotu odvodit jeho polohu a orientaci. V podstatě umožňuje bayesovský filtr robotům neustále aktualizovat jejich nejpravděpodobnější pozici v systému souřadnic na základě nejaktuálnějších dat získaných ze senzorů. Je to rekurzivní algoritmus a sestává ze dvou částí: předpovědi a aktualizace. Pokud jsou hodnoty proměnných lineární a normálně rozděleny, je bayesovský filtr shodný s Kalmanovým filtrem.
Zjednodušeně řečeno, robot pohybující se po celé ploše (mřížce) může mít několik různých senzorů, které mu poskytují informace o jeho okolí. Robot tedy může začít s jistotou, že je na pozici (0, 0). Avšak se zvětšující se vzdáleností od jeho výchozí pozice má robot stále menší jistotu ohledně jeho polohy. Za pomoci bayesovského filtru se může robot rozhodnout o jeho pravděpodobné aktuální poloze a tato pravděpodobná pozice může být neustále aktualizována na základě dodatečných dat ze senzorů.
Model
Jako skutečný stav se předpokládá nepozorovaný Markovův proces, měřením jsou pozorovány stavy skrytého Markovova modelu (HMM). Následující obrázek znázorňuje bayesovskou síť skládající se z HMM.

Vzhledem k Markovovu předpokladu, je pravděpodobnost aktuálního skutečného stavu dána pouze bezprostředně předcházejícím stavem a není závislá na ostatních předešlých stavech.
Obdobně, měření v k-tém čase je závislé pouze na současném stavu a nikoli na ostatních předešlých stavech vzhledem k tomu současnému.
Pomocí těchto předpokladů lze rozdělení pravděpodobnosti pro všechny stavy zapsat jednoduše jako:
Avšak při využití Kalmanova filtru k odhadu stavu x je rozložení pravděpodobnosti zájmu spojeno s aktuálními stavy, které jsou podmíněny měřeními v aktuálním čase (toho je dosaženo odsunutím předchozích stavů a vydělením pravděpodobnosti počtem měření).
Toto vede k předpovědi a změně kroků v Kalmanově filtru pravděpodobnostním zápisem. Rozdělení pravděpodobnosti spojené s předpokládaným stavem je součet (integrál) součinů rozdělení pravděpodobnosti spojené s přechodem z (k - 1)-tého stavu do k-tého a rozdělení pravděpodobnosti spojené s předchozím stavem pro všechna možná .
Změna rozložení pravděpodobnosti je úměrná součinu měření pravděpodobnosti a předpovídaného stavu.
Jmenovatel
je konstantně relativní k , takže ho vždy můžeme nahradit koeficientem , který může být obvykle v praxi ignorován. Čitatele je pak možné vypočítat a jednoduše normalizovat, jelikož jeho nedílnou součástí musí být jednotka.
Aplikace
- Kalmanův filtr využívá rekurzivní bayesovský filtr pro multivariační normální rozdělení
- Particle filter na základě sekvenční techniky Monte Carlo metody (SMC), která modeluje PDF za pomoci sady diskrétních bodů
- Grid-based odhady, které rozdělí PDF do diskrétní mřížky
Sekvenční bayesovské filtrování
Sekvenční bayesovské filtrování je rozšíření bayesovského odhadu v případě, kdy se pozorované hodnoty s časem mění. Je to způsob, jak odhadnout reálnou hodnotu pozorované proměnné, která se vyvíjí v čase.
Metoda se nazývá:
- filtrování
- když odhadujeme aktuální hodnotu danou předchozími měřeními,
- vyhlazování
- při odhadování minulých hodnot daných současnými a minulými měřeními,
- předpovídání
- při odhadu pravděpodobné budoucí hodnoty.
Pojem sekvenční bayesovské filtrování je velmi využíván v řízení a robotice.
Reference
Externí odkazy
- Šablona:Cite journal
- Šablona:Cite web
- Feynman-Kac models and interacting particle algorithms (a.k.a. Particle Filtering) Theoretical aspects and a list of application domains of particle filters