Banachova algebra

Z testwiki
Verze z 4. 8. 2021, 10:34, kterou vytvořil imported>JAnDbot (robot: přidáno {{Autoritní data}}; kosmetické úpravy)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

V matematice, speciálně ve funkcionální analýze Banachova algebra pojmenována podle Stefana Banacha je asociativní algebra A nad reálnými nebo komplexními čísly, která je současně Banachovým prostorem. Algebraické násobení a norma Banachova prostoru musí splňovat následující nerovnost:

x,yA:xy xy

(tedy norma součinu je menší než nebo rovna součinu norem). To zajistí, že operace násobení je spojitá. Tuto vlastnost lze najít u reálných a komplexních čísel, například |-6×5| ≤ |-6|×|5|.

V předchozím textu zvolňujeme Banachův prostor do normovaného prostoru, analogická struktura se nazývá normovaná algebra.

Reference

Šablona:Překlad Šablona:Pahýl Šablona:Autoritní data