Eikonálová rovnice

Z testwiki
Verze z 27. 6. 2024, 10:23, kterou vytvořil 149.255.83.41 (diskuse)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Eikonálová rovnice je jednou ze základních rovnic geometrické (paprskové) optiky. Jedná se o nelineární diferenciální rovnici, která ukazuje vztah mezi vlnovou optikou a geometrickou optikou. Eikonálová rovnice se dá odvodit z Maxwellových rovnic. Do nich dosadíme intenzitu harmonické rovinné vlny ve tvaru:

E(r,t)=E0(r)exp[i(ωtkS(r)]

kde E0 je amplituda intenzity elektrického pole, ω je frekvence světla, k je velikost vlnového vektoru a S je eikonál.

Po dosazení E(r,t) tohoto tvaru do Maxwellových rovnic získáme podmínku pro nenulovost pole – eikonálovou rovnici.

Eikonálová rovnice:

(S)2=n2

kde S je eikonál, n je index lomu prostředí

Při známém průběhu indexu lomu lze z eikonálové rovnice určit tvar vlny. Geometrické místo bodů s konstantní hodnotou eikonálu určuje vlnoplochu. Paprsek v geometrické optice pak definujeme jako normálu k této vlnoploše.

Šablona:Pahýl Šablona:Autoritní data