Nezávislá množina

Z testwiki
Verze z 8. 8. 2021, 20:04, kterou vytvořil imported>JAnDbot ({{Autoritní data}})
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání
Modře označené vrcholy tvoří maximální nezávislou množinu vyobrazeného grafu.

Nezávislá množina (NM) je pojem z teorie grafů. Nezávislá množina v grafu je taková množina jeho vrcholů, že žádné dva z nich nejsou spojeny hranou.[1][2]

Definice

Nechť G = (V, E) je graf, pak SV je nezávislá množina, pokud platí x,yS:(x,y)E.

Nezávislost grafu

Nezávislost grafu G (značíme α(G) )je největší počet prvků nezávislé množiny grafu G.

Maximální nezávislá množina

Častou úlohou v teorii grafů je hledání maximální nezávislé množiny daného grafu. Ukazuje se ovšem, že je to NP-úplný problém.[2] Důkaz se provádí polynomiálním převodem instance problému maximální kliky v grafu na instanci problému NM (hledání nezávislé množiny velikosti k odpovídá hledání kliky velikosti k v doplňkovém grafu). Pokud by bylo možné řešit tento problém deterministicky v polynomiálním čase, bylo by tak možné řešit i problém kliky, o kterém je dokázáno, že je NP-úplný.

Reference

Externí odkazy

Šablona:Autoritní data

Šablona:Portály