Protiřetězec

Z testwiki
Verze z 10. 5. 2022, 17:44, kterou vytvořil imported>Adboda (growthexperiments-addlink-summary-summary:3|0|0)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Protiřetězec (někdy také označovaný jako antiřetězec) je matematický termín z oboru algebry a teorie uspořádání, který se používá pro označení množin vzájemně neporovnatelných prvků.

Definice

Předpokládejme, že množina X je uspořádána relací R. O podmnožině YX řekneme, že se jedná o protiřetězec, pokud jsou každé dva různé prvky a,bY neporovnatelné pomocí R, tj.
(a,bY)(aRba=b)

Příklady

Protiřetězce v lineárním uspořádání

V lineárně uspořádané množině nemá pojem protiřetězec příliš dobrý smysl – každé dva prvky jsou porovnatelné a neexistují jiné než (nepříliš zajímavé) jednoprvkové protiřetězce. To se týká například běžného uspořádání reálných čísel nebo přirozených čísel podle velikosti.

Protiřetězce v množině komplexních čísel

Uvažujme ostré uspořádání R množiny komplexních čísel podle vzdálenosti od nuly (tj. podle absolutní hodnoty). Kdo by měl problém s pojmem komplexního čísla, může si představit geometrickou rovinu a vzdálenost bodů (uspořádaných dvojic) od počátku souřadnic (tj. od bodu [0,0]):
c1<Rc2|c1|<|c2|

Položme si otázku, jaké největší protiřetězce zde existují. Každé dva body, které mají stejnou vzdálenost od nuly (leží na stejné kružnici se středem v nule) jsou neporovnatelné a mohou tedy spolu náležet do protiřetězce. Jakmile ale nějaké dva body leží na dvou různých kružnicích se středem v 0, mají různou absolutní hodnotu a jsou porovnatelné – nemohou být spolu v jednom protiřetězci.

Největší možné protiřetězce při tomto uspořádání komplexních čísel jsou tedy soustředné kružnice se středem v bodě 0.

Protiřetězce vzhledem k dělitelnosti

Uvažujme o množině všech kladných přirozených čísel, s uspořádáním podle dělitelnosti (tj. a|b, pokud a dělí b).

Při tomto uspořádání existují v množině přirozených čísel libovolně velké (co do počtu prvků) protiřetězce. Příkladem nekonečného protiřetězce je množina všech prvočísel. Tento protiřetězec je přitom největší možný – jakékoliv kladné přirozené číslo je porovnatelné s nějakým prvočíslem, takže ho nelze k tomuto protiřetězci přidat, aniž by přestal být protiřetězcem.

Existuje zde ale i jeden největší možný protiřetězec, který je pouze jednoprvkový – je to množina {1}. Důvod je ten, že číslo 1 je porovnatelné s každým přirozeným číslem (dělí každé přirozené číslo).

Odkazy

Související články

Šablona:Autoritní data

Šablona:Portály