Krylovův prostor: Porovnání verzí
imported>Kolarp m +Kategorie:Teorie operátorů |
(Žádný rozdíl)
|
Aktuální verze z 18. 11. 2024, 00:51
Krylovův prostor, respektive Krylovův podprostor, je pojem z oboru lineární algebry. Pro čtvercovou matici stupně a vektor dimenze je Krylovův podprostor řádu definován jako lineární obal násobků prvními mocninami počínaje od nulté mocniny, tedy jednotkové matice (). Tedy lineární obal vektorů .
Jméno pochází od ruského námořního inženýra a aplikovaného matematika Alexeje Nikolajeviče Krylova, který o nich napsal v roce 1931 práci.
Svou aplikaci našly Krylovovy podprostory například v moderních iteračních metodách pro hledání vlastních hodnot velkých řídkých matic nebo pro řešení velkých soustav lineárních rovnic, kde je z hlediska výpočetní složitosti jejich výhodou, že dochází k násobení velké matice vektorem a nikoliv k násobení přímo velkých matic mezi sebou. Výpočet členů posloupnosti vektorů lze totiž spočítat násobením předchozího členu maticí .