Odpověď z MediaWiki API

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "compare": {
        "fromid": 1,
        "fromrevid": 1,
        "fromns": 0,
        "fromtitle": "Hlavn\u00ed strana",
        "toid": 2,
        "torevid": 2,
        "tons": 0,
        "totitle": "Matematika",
        "*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">\u0158\u00e1dek 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">\u0158\u00e1dek 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">&lt;strong&gt;MediaWiki byla \u00fasp\u011b\u0161n\u011b nainstalov\u00e1na</del>.<del class=\"diffchange diffchange-inline\">&lt;/strong&gt;</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Soubor:Mathematicsgeneral.jpg|n\u00e1hled|Ilustrace \u0161\u00ed\u0159e matematick\u00fdch discipl\u00edn]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Matematika''' (z&amp;nbsp;[[\u0159e\u010dtina|\u0159eck\u00e9ho]] {{Cizojazy\u010dn\u011b|el|\u03bc\u03b1\u03b8\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03cc\u03c2}} (''math\u00e9matikos'') = ''miluj\u00edc\u00ed pozn\u00e1n\u00ed''; {{Cizojazy\u010dn\u011b|el|\u03bc\u03ac\u03b8\u03b7\u03bc\u03b1}} (''math\u00e9ma'') = ''v\u011bda, v\u011bd\u011bn\u00ed, pozn\u00e1n\u00ed'') je [[v\u011bda]] zab\u00fdvaj\u00edc\u00ed se z&amp;nbsp;form\u00e1ln\u00edho hlediska [[kvantita|kvantitou]], [[struktura|strukturou]], [[prostor (geometrie)|prostorem]] a zm\u011bnou. Matematika je t\u00e9\u017e popisov\u00e1na jako discipl\u00edna, je\u017e se zab\u00fdv\u00e1 vytv\u00e1\u0159en\u00edm [[abstrakce|abstraktn\u00edch]] [[entita (matematika)|entit]] a vyhled\u00e1v\u00e1n\u00edm z\u00e1konit\u00fdch vztah\u016f mezi nimi</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[<del class=\"diffchange diffchange-inline\">https</del>:/<del class=\"diffchange diffchange-inline\">/www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Help</del>:<del class=\"diffchange diffchange-inline\">Contents U\u017eivatelsk\u00e1 p\u0159\u00edru\u010dka] v\u00e1m napov\u00ed</del>, <del class=\"diffchange diffchange-inline\">jak pou\u017e\u00edvat MediaWiki</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Matematika je zalo\u017eena a budov\u00e1na jako </ins>[<ins class=\"diffchange diffchange-inline\">[exaktn\u00ed]] v\u011bda. Jej\u00ed exaktnost (podobn\u011b jako jin\u00fdch exaktn\u00edch v\u011bd) tkv\u00ed v&amp;nbsp;tom \u017ee, jak matematick\u00e9 objekty, tak i operace nad nimi jsou exaktn\u011b vyty\u010deny (tj. s&amp;nbsp;nulovou vnit\u0159n\u00ed [[v\u00e1gnost]]\u00ed)&lt;ref&gt; K\u0159emen, J.</ins>: <ins class=\"diffchange diffchange-inline\">''Modely a syst\u00e9my'' ACADEMIA, Praha 2007. &lt;</ins>/<ins class=\"diffchange diffchange-inline\">ref&gt;, tedy tak, \u017ee ka\u017ed\u00fd v&amp;nbsp;matematice (v&amp;nbsp;dan\u00e9 exaktn\u00ed v\u011bd\u011b) vzd\u011blan\u00fd \u010dlov\u011bk naprosto p\u0159esn\u011b (bez jak\u00fdchkoli pochyb) v\u00ed, co znamenaj\u00ed</ins>. <ins class=\"diffchange diffchange-inline\">To je podstata exaktnosti t\u00e9to discipl\u00edny</ins>. <ins class=\"diffchange diffchange-inline\">V&amp;nbsp;r\u00e1mci matematiky existuje ale je\u0161t\u011b jinak ch\u00e1pan\u00e1 exaktnost, a to exaktnost pou\u017eit\u00fdch metod a jejich v\u00fdsledk\u016f</ins>:</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00a0 </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">P\u0159\u00edkladem m\u016f\u017ee b\u00fdt exaktn\u00ed a neexaktn\u00ed \u0159e\u0161en\u00ed</ins>: <ins class=\"diffchange diffchange-inline\">N\u011bkter\u00e9 aplikace jsou \u0159e\u0161iteln\u00e9 pouze opu\u0161t\u011bn\u00edm p\u0159\u00edsn\u00e9ho a omezuj\u00edc\u00edho po\u017eadavku exaktnosti v\u00fdsledku. Nap\u0159\u00edklad proto, \u017ee neexistuje matematick\u00e1 funkce, kter\u00e1 by byla (exaktn\u00edm) \u0159e\u0161en\u00edm dan\u00e9 diferenci\u00e1ln\u00ed rovnice. M\u016f\u017ee ale existovat posloupnost funkc\u00ed, kter\u00e1 s&amp;nbsp;libovolnou p\u0159esnost\u00ed (nikoli v\u0161ak exaktn\u011b), \u0159e\u0161en\u00edm t\u00e9 rovnice je. Dosazen\u00edm exaktn\u00edho v\u00fdsledku (\u0159e\u0161en\u00ed) do v\u00fdchoz\u00edho vztahu (rovnice) dost\u00e1v\u00e1me identitu. Neexaktn\u00ed v\u00fdsledek se od exaktn\u00edho li\u0161\u00ed o \u201echybu \u201c</ins>, <ins class=\"diffchange diffchange-inline\">tak\u017ee po jeho dosazen\u00ed identitu nedostaneme</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">Za\u010d\u00edn\u00e1me </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Charakteristickou vlastnost\u00ed matematiky je jej\u00ed d\u016fraz na absolutn\u00ed p\u0159esnost [[metoda|metod]] a nezpochybnitelnost v\u00fdsledk\u016f. Tyto vlastnosti, kter\u00e9 matematiku odli\u0161uj\u00ed od v\u0161ech ostatn\u00edch v\u011bdn\u00edch discipl\u00edn, maj\u00ed p\u016fvod ji\u017e v&amp;nbsp;[[starov\u011bk\u00e9 \u0158ecko|antick\u00e9m \u0158ecku]]. Nejstar\u0161\u00edm dochovan\u00fdm p\u0159\u00edkladem tohoto p\u0159\u00edstupu je kniha \u0159eck\u00e9ho [[matematik]]a [[Eukleid\u00e9s|Euklida]] ''[[Eukleidovy Z\u00e1klady|Z\u00e1klady]]'' poch\u00e1zej\u00edc\u00ed z&amp;nbsp;[[4. stolet\u00ed p\u0159. n. l.]]</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual</del>:<del class=\"diffchange diffchange-inline\">Configuration_settings Nastaven\u00ed konfigurace</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual</del>:<del class=\"diffchange diffchange-inline\">FAQ \u010casto kladen\u00e9 </del>ot\u00e1zky o <del class=\"diffchange diffchange-inline\">MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u0160irok\u00e9 ve\u0159ejnosti je zn\u00e1ma tzv. [[element\u00e1rn\u00ed matematika]], kter\u00e1 se zab\u00fdv\u00e1 operov\u00e1n\u00edm s&amp;nbsp;[[\u010d\u00edslo|\u010d\u00edsly]], \u0159e\u0161en\u00edm praktick\u00fdch \u00faloh, jednoduch\u00fdch [[rovnice|rovnic]] a popisem z\u00e1kladn\u00edch [[geometrie|geometrick\u00fdch]] objekt\u016f. Ve [[fyzika|fyzice]], [[Informa\u010dn\u00ed v\u011bda|informatice]], [[chemie|chemii]], [[ekonomie|ekonomii]] a dal\u0161\u00edch oborech se \u010dasto vyu\u017e\u00edvaj\u00ed v\u00fdsledky [[aplikovan\u00e1 matematika|aplikovan\u00e9 matematiky]], kter\u00e1 je tak\u00e9 t\u011bmito obory zp\u011btn\u011b ovliv\u0148ov\u00e1na. Tzv. [[\u010dist\u00e1 matematika]] se zab\u00fdv\u00e1 pouze vysoce abstraktn\u00edmi pojmy, jejich\u017e definov\u00e1n\u00ed nen\u00ed p\u0159\u00edmo motivov\u00e1no praktick\u00fdm u\u017eitkem v&amp;nbsp;re\u00e1ln\u00e9m sv\u011bt\u011b. N\u011bkter\u00e9 obory \u010dist\u00e9 matematiky se nach\u00e1zej\u00ed na pomez\u00ed s&amp;nbsp;[[logika|logikou]] \u010di [[Filozofie|filozofi\u00ed]].</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">postorius</del>/<del class=\"diffchange diffchange-inline\">lists</del>/<del class=\"diffchange diffchange-inline\">mediawiki-announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia.org</del>/ <del class=\"diffchange diffchange-inline\">E</del>-<del class=\"diffchange diffchange-inline\">mailov\u00e1 konference ozn\u00e1men\u00ed MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [https://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special:MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Localisation#Translation_resources P\u0159eklad MediaWiki do va\u0161eho jazyka</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>== <ins class=\"diffchange diffchange-inline\">Charakteristika metod a&amp;nbsp;c\u00edl\u016f matematiky </ins>==</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [https://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.org/<del class=\"diffchange diffchange-inline\">wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual</del>:<del class=\"diffchange diffchange-inline\">Combating_spam Nau\u010dte se bojovat se spamem na va\u0161\u00ed wiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Mezi jin\u00fdmi v\u011bdami se matematika vyzna\u010duje nejvy\u0161\u0161\u00ed m\u00edrou [</ins>[<ins class=\"diffchange diffchange-inline\">abstrakce]] a p\u0159esnosti. D\u00edky t\u011bmto vlastnostem je \u010dasto ozna\u010dov\u00e1na za ''kr\u00e1lovnu v\u011bd''&lt;ref&gt;{{Citace elektronick\u00e9 monografie</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | p\u0159\u00edjmen\u00ed = Dan\u00ed\u010dkov\u00e1</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | jm\u00e9no = Sylva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | p\u0159\u00edjmen\u00ed2 = Houdek</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | jm\u00e9no2 = Franti\u0161ek</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | titul = O povaze kr\u00e1lovny v\u011bd aneb Matematika</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | url = http</ins>://<ins class=\"diffchange diffchange-inline\">abicko</ins>.<ins class=\"diffchange diffchange-inline\">avcr</ins>.<ins class=\"diffchange diffchange-inline\">cz/archiv/2004/5</ins>/<ins class=\"diffchange diffchange-inline\">obsah</ins>/<ins class=\"diffchange diffchange-inline\">o-povaze-kralovny-ved-aneb-matematika.html</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | datum vyd\u00e1n\u00ed = kv\u011bten 2004</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | datum aktualizace =</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | datum p\u0159\u00edstupu = 21.5.2013</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | vydavatel = Akademick\u00fd bulletin [[Akademie v\u011bd \u010cR]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | jazyk =</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;/ref&gt;. Tzv. [[matematick\u00fd d\u016fkaz]] je nejspolehliv\u011bj\u0161\u00ed zn\u00e1m\u00fd zp\u016fsob, jak ov\u011b\u0159ovat pravdivost tvrzen\u00ed. V&amp;nbsp;matematice jsou za spolehliv\u00e1 pova\u017eov\u00e1na pouze ta [[Matematick\u00e1 v\u011bta|tvrzen\u00ed]] (naz\u00fdvan\u00e9 ''[[Matematick\u00e1 v\u011bta|v\u011bty]]''), ke kter\u00fdm je zn\u00e1m matematick\u00fd d\u016fkaz. Nov\u00e9 pojmy jsou vytv\u00e1\u0159eny jednozna\u010dn\u00fdmi [[definice]]mi z&amp;nbsp;pojm\u016f ji\u017e zaveden\u00fdch.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Pro sou\u010dasnou matematiku je typick\u00e1 vysok\u00e1 p\u0159esnost, zaji\u0161\u0165ovan\u00e1 [[Axiomatick\u00e1 teorie mno\u017ein|\u00faplnou formalizac\u00ed]]. Je-li stanoveno n\u011bkolik z\u00e1kladn\u00edch tvrzen\u00ed (tzv. [[axiom]]y), je z&amp;nbsp;nich mo\u017en\u00e9 s&amp;nbsp;pou\u017eit\u00edm odvozovac\u00edch pravidel zalo\u017een\u00fdch na logice odvodit dal\u0161\u00ed pravdiv\u00e1 tvrzen\u00ed pomoc\u00ed [[Hilbertovsk\u00fd kalkulus|form\u00e1ln\u00edch d\u016fkaz\u016f]]. V\u00fdklad matematick\u00fdch poznatk\u016f tak spo\u010d\u00edv\u00e1 v&amp;nbsp;definov\u00e1n\u00ed nov\u00fdch pojm\u016f, formulov\u00e1n\u00ed platn\u00fdch v\u011bt o&amp;nbsp;nich (p\u0159\u00edpadn\u011b takov\u00fdch v\u011bt, kter\u00e9 je d\u00e1vaj\u00ed do souvislosti s&amp;nbsp;pojmy star\u0161\u00edmi) a dokazov\u00e1n\u00ed pravdivosti t\u011bchto v\u011bt. Matematick\u00e9 pr\u00e1ce maj\u00ed proto \u010dasto strukturu \u201edefinice \u2013 v\u011bta \u2013 d\u016fkaz\u201c s&amp;nbsp;minimem dopl\u0148uj\u00edc\u00edho textu \u010di zcela bez n\u011bj. Stejn\u011b jako v&amp;nbsp;jin\u00fdch v\u011bdn\u00edch discipl\u00edn\u00e1ch se tak\u00e9 m\u016f\u017ee objevit formulace neov\u011b\u0159en\u00e9 [[hypot\u00e9za|hypot\u00e9zy]] - p\u0159edpokladu (jako v\u00fdzva k&amp;nbsp;jej\u00edmu dok\u00e1z\u00e1n\u00ed \u010di vyvr\u00e1cen\u00ed) nebo polo\u017een\u00ed dosud nezodpov\u011bzen\u00e9 ot\u00e1zky.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">N\u011bkter\u00e9 z&amp;nbsp;matematikou vytv\u00e1\u0159en\u00fdch abstraktn\u00edch [[pojem|pojm\u016f]] slou\u017e\u00ed k&amp;nbsp;vysv\u011btlen\u00ed \u010di snadn\u011bj\u0161\u00edmu uchopen\u00ed pojm\u016f dal\u0161\u00edch, jin\u00e9 slou\u017e\u00ed v&amp;nbsp;jin\u00fdch v\u011bdn\u00edch oborech jako n\u00e1stroj k&amp;nbsp;popisu ur\u010dit\u00fdch [[Fenom\u00e9n|jev\u016f]] nebo jako idealizovan\u00fd [[V\u011bdeck\u00e9 modelov\u00e1n\u00ed|model]] re\u00e1ln\u00fdch objekt\u016f \u010di syst\u00e9m\u016f, dal\u0161\u00ed pak umo\u017e\u0148uj\u00ed precizaci a rozvoj koncept\u016f a my\u0161lenek n\u011bkter\u00fdch discipl\u00edn [[filozofie]]. Z\u00e1konitosti objeven\u00e9 mezi t\u011bmito pojmy lze p\u0159i vhodn\u00e9 aplikaci zp\u011btn\u011b p\u0159eformulovat jako pravidla a vlastnosti skute\u010dn\u00e9ho sv\u011bta nebo jako obecn\u011b platn\u00e9 [[teze]]. To v\u0161ak ji\u017e nen\u00ed \u00fakolem matematiky, n\u00fdbr\u017e p\u0159\u00edslu\u0161n\u00e9 jin\u00e9 discipl\u00edny.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Jazyk matematiky je um\u011bl\u00fd form\u00e1ln\u00ed jazyk ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Je t\u0159eba p\u0159ipomenout, \u017ee jazyk matematiky je um\u011bl\u00fd [[form\u00e1ln\u00ed jazyk]], pro kter\u00fd plat\u00ed kategorick\u00fd po\u017eadavek exaktn\u00ed (tj. s&amp;nbsp;nulovou vnit\u0159n\u00ed v\u00e1gnost\u00ed) [[interpretace]] v\u0161ech jeho jazykov\u00fdch konstrukc\u00ed. Um\u011bl\u00fdmi form\u00e1ln\u00edmi jazyky jsou i jazyky v\u0161ech typ\u016f form\u00e1ln\u00edch logik a programovac\u00ed jazyky. Nelze tedy nap\u0159. v&amp;nbsp;jak\u00e9koli form\u00e1ln\u00ed logice pou\u017e\u00edt p\u0159irozen\u00fd jazyk, nebo\u0165 ten m\u00e1 inherentn\u011b v\u00e1gn\u00ed, a tak i emocion\u00e1ln\u00ed interpretaci (\u0159\u00edk\u00e1me j\u00ed [[konotace]]) v\u0161ech sv\u00fdch jazykov\u00fdch konstrukc\u00ed.&lt;ref&gt; K\u0159emen, J.</ins>: <ins class=\"diffchange diffchange-inline\">'' Nov\u00fd pohled na mo\u017enosti automatizovan\u00e9ho (po\u010d\u00edta\u010dov\u00e9ho) odvozov\u00e1n\u00ed. Slaboproud\u00fd obzor. Ro\u010d. 68 (2013), \u010d. 1., str. 7 \u2013 11. '' &lt;</ins>/<ins class=\"diffchange diffchange-inline\">ref&gt;. S&amp;nbsp;t\u00edmto omylem se m\u016f\u017eeme setkat v&amp;nbsp;n\u011bkter\u00fdch u\u010debnic\u00edch form\u00e1ln\u00ed logiky nebo um\u011bl\u00e9 inteligence viz [[reprezentace znalost\u00ed]]. Je to p\u0159ekro\u010den\u00ed hranic exaktn\u00edho sv\u011bta poru\u0161en\u00edm podm\u00ednky exaktn\u00ed interpretace. Pro hlub\u0161\u00ed pochopen\u00ed probl\u00e9mu</ins>: <ins class=\"diffchange diffchange-inline\">P\u0159irozen\u00fd jazyk nem\u016f\u017ee b\u00fdt sou\u010d\u00e1st\u00ed exaktn\u00edho sv\u011bta, nem\u00e1 exaktn\u00ed interpretaci sv\u00fdch jazykov\u00fdch konstrukc\u00ed. Nap\u0159\u00edklad pokud n\u011bjak\u00fd objekt exaktn\u00edho sv\u011bta, t\u0159eba veli\u010dinu \u201eRychlost pohybu t\u011blesa\u201c, m\u00edsto (obvykl\u00e9ho) symbolu&amp;nbsp;V (jedno\u010dlenn\u00e9ho \u0159et\u011bzce symbol\u016f), ozna\u010d\u00edme konstrukc\u00ed p\u0159irozen\u00e9ho jazyka (v\u011btou): Marj\u00e1nka se na n\u011bj usm\u00edvala, nelze tuto v\u011btu ch\u00e1pat jako v\u011btu p\u0159irozen\u00e9ho jazyka (a p\u0159i\u0159azovat j\u00ed obvykl\u00fd v\u00fdznam), ale nutn\u011b jen jako \u0159et\u011bzec symbol\u016f dost\u00e1vaj\u00edc\u00ed v&amp;nbsp;exaktn\u00edm sv\u011bt\u011b nov\u00fd v\u00fdznam, a to jm\u00e9no t\u00e9 veli\u010diny. Ona v\u011bta dost\u00e1v\u00e1 tedy stejn\u00fd v\u00fdznam, jako m\u011bl p\u016fvodn\u011b symbol&amp;nbsp;V. P\u0159i\u0159azen\u00ed v\u00fdznamu t\u00e9 v\u011bt\u011b je pak exaktn\u00ed, jak odpov\u00edd\u00e1 statutu veli\u010diny jako elementu exaktn\u00edho sv\u011bta. Je\u0161t\u011b poznamenejme, \u017ee pokud um\u011bl\u00e9 form\u00e1ln\u00ed jazyky maj\u00ed vypov\u00eddat o znalostech v re\u00e1ln\u00e9m sv\u011bt\u011b, mus\u00ed se tak d\u00edt prost\u0159ednictv\u00edm veli\u010din viz [[Exaktn\u00ed v\u011bda]], jinak nelze. [[Veli\u010dina]] je jedin\u00fdm prost\u0159edn\u00edkem mezi re\u00e1ln\u00fdm a exaktn\u00edm sv\u011btem.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Soubor:Image-Al-Kit\u0101b al-mu\u1e2bta\u1e63ar f\u012b \u1e25is\u0101b al-\u011fabr wa-l-muq\u0101bala.jpg|n\u00e1hled|Str\u00e1nka z&amp;nbsp;knihy [[Al-Kit\u0101b al-mu\u1e2bta\u1e63ar f\u012b \u1e25is\u0101b al-\u011fabr wa-l-muq\u0101bala]] od [[Persie|persk\u00e9ho]] matematika [[Al-Chorezm\u00ed]]ho, v&amp;nbsp;n\u00ed\u017e jsou polo\u017eeny z\u00e1klady [[algebra|algebry]]]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Historie ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Podrobn\u011b|D\u011bjiny matematiky}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Vznik matematiky byl zap\u0159\u00ed\u010din\u011bn p\u0159edev\u0161\u00edm pot\u0159ebou \u0159e\u0161it praktick\u00e9 \u00falohy, jako nap\u0159\u00edklad r\u016fzn\u00e9 [[obchod]]n\u00ed \u00falohy, vym\u011b\u0159ov\u00e1n\u00ed a d\u011blen\u00ed pozemk\u016f, [[stavebnictv\u00ed]] a m\u011b\u0159en\u00ed [[\u010das]]u. [[D\u011bjiny matematiky|Historie matematiky]] sah\u00e1 a\u017e do [[prav\u011bk]]u, kdy vznikly prvn\u00ed abstraktn\u00ed matematick\u00e9 pojmy \u2013 [[p\u0159irozen\u00e9 \u010d\u00edslo|p\u0159irozen\u00e1 \u010d\u00edsla]]. Velk\u00fd rozvoj prod\u011blala v&amp;nbsp;[[starov\u011bk\u00e9 \u0158ecko|antick\u00e9m \u0158ecku]], kde v\u00fdrazn\u00fdch \u00fasp\u011bch\u016f dos\u00e1hla zejm\u00e9na [[geometrie]]. Dal\u0161\u00ed etapou prudk\u00e9ho rozvoje matematiky byl ran\u00fd novov\u011bk, kdy byly p\u0159edev\u0161\u00edm Descartem ustaveny z\u00e1klady [[matematick\u00e1 anal\u00fdza|matematick\u00e9 anal\u00fdzy]]. Pot\u00e9 se d\u00edky pr\u00e1ci Newtona, Leibnize, Eulera, Gausse a dal\u0161\u00edch matematik\u016f poda\u0159ilo dos\u00e1hnout z\u00e1sadn\u00edch v\u00fdsledk\u016f v&amp;nbsp;oblasti anal\u00fdzy zejm\u00e9na polo\u017een\u00edm z\u00e1klad\u016f diferenci\u00e1ln\u00edho a integr\u00e1ln\u00edho po\u010dtu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Jin\u00fdm v\u00fdznamn\u00fdm obdob\u00edm d\u011bjin matematiky byl p\u0159elom [[19. stolet\u00ed|19.]] a [[20. stolet\u00ed]], kdy zkoum\u00e1n\u00ed dokazatelnosti tvrzen\u00ed bylo postaveno na solidn\u00ed a form\u00e1ln\u00ed z\u00e1klad, objevy v&amp;nbsp;[[matematick\u00e1 logika|matematick\u00e9 logice]] a zaveden\u00edm [[axiomatick\u00e1 teorie mno\u017ein|axiomatick\u00e9 teorie mno\u017ein]]. Touto dobou za\u010daly b\u00fdt t\u00e9\u017e zkoum\u00e1ny [[Abstraktn\u00ed algebra|abstraktn\u00ed struktury]], co\u017e umo\u017e\u0148uje jedn\u00edm d\u016fkazem ov\u011b\u0159it matematick\u00e9 tvrzen\u00ed pro [[Abstraktn\u00ed algebra#V\u00fdznam abstraktn\u00ed algebry|\u0161irokou skupinu]] matematick\u00fdch objekt\u016f. Vyvrcholen\u00edm tohoto trendu byl v&amp;nbsp;polovin\u011b 20.&amp;nbsp;stolet\u00ed vznik [[teorie kategori\u00ed]], kter\u00e1 je pokl\u00e1d\u00e1na za nejobecn\u011bj\u0161\u00ed a nejabstraktn\u011bj\u0161\u00ed matematickou discipl\u00ednu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Matematick\u00e9 discipl\u00edny ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{podrobn\u011b|text=Strukturovan\u00fd seznam v\u0161ech z\u00e1kladn\u00edch obor\u016f matematiky|Seznam matematick\u00fdch discipl\u00edn}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Hlavn\u00ed klasick\u00e9 discipl\u00edny matematiky se vyvinuly ze \u010dty\u0159 praktick\u00fdch lidsk\u00fdch pot\u0159eb&amp;nbsp;\u2013&amp;nbsp;pot\u0159eby po\u010d\u00edtat p\u0159i [[obchod]]ov\u00e1n\u00ed, porozum\u011bt vztah\u016fm mezi \u010d\u00edseln\u011b vyj\u00e1d\u0159en\u00fdmi mno\u017estv\u00edmi, vym\u011b\u0159ov\u00e1n\u00ed pozemk\u016f a staveb a p\u0159edpov\u00edd\u00e1n\u00ed [[astronomie|astronomick\u00fdch]] jev\u016f. Z&amp;nbsp;t\u011bchto \u010dty\u0159 pot\u0159eb vznikly \u010dty\u0159i klasick\u00e9 matematick\u00e9 discipl\u00edny&amp;nbsp;\u2013&amp;nbsp;po \u0159ad\u011b [[aritmetika]], [[algebra]], [[geometrie]] a&amp;nbsp;[[matematick\u00e1 anal\u00fdza]], kter\u00e9 se zab\u00fdvaj\u00ed zhruba \u0159e\u010deno \u010dty\u0159mi z\u00e1kladn\u00edmi oblastmi z\u00e1jmu matematiky&amp;nbsp;\u2013&amp;nbsp;[[kvantita|kvantitou]], [[struktura|strukturou]</ins>]<ins class=\"diffchange diffchange-inline\">, [[prostor (geometrie)|prostorem]] a zm\u011bnou. Pozd\u011bji se d\u00edky snah\u00e1m zast\u0159e\u0161it tyto \u010dty\u0159i discipl\u00edny jednotnou matematickou teori\u00ed a dos\u00e1hnout co nejv\u011bt\u0161\u00ed p\u0159esnosti a nezpochybnitelnosti v\u00fdsledk\u016f rozvinulo n\u011bkolik vz\u00e1jemn\u011b prov\u00e1zan\u00fdch discipl\u00edn naz\u00fdvan\u00fdch souhrnn\u011b [[z\u00e1klady matematiky]]. Tyto discipl\u00edny krom\u011b v\u00fd\u0161e zm\u00edn\u011bn\u00e9ho umo\u017enily tak\u00e9 hlub\u0161\u00ed propojen\u00ed matematiky s&amp;nbsp;[[Filozofie|filozofi\u00ed]] \u010di rozvoj [[teoretick\u00e1 informatika|teoretick\u00e9 informatiky]]. Ve [[20. stolet\u00ed|20.&amp;nbsp;stolet\u00ed]] zaznamenaly ohromn\u00fd rozvoj discipl\u00edny [[aplikovan\u00e1 matematika|aplikovan\u00e9 matematiky]], kter\u00e9 slou\u017e\u00ed jako d\u016fle\u017eit\u00e9 n\u00e1stroje v&amp;nbsp;nejr\u016fzn\u011bj\u0161\u00ed oborech lidsk\u00e9 \u010dinnosti.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Kvantita ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Studium kvantity je v\u016fbec nejstar\u0161\u00ed oblast\u00ed matematiky. Jeho po\u010d\u00e1tky se objevuj\u00ed ji\u017e v&amp;nbsp;[[prav\u011bk]]u, kdy doch\u00e1z\u00ed k&amp;nbsp;porozum\u011bn\u00ed pojmu [[p\u0159irozen\u00e9 \u010d\u00edslo|p\u0159irozen\u00e9ho \u010d\u00edsla]]. Postupem \u010dasu n\u00e1sleduje vytv\u00e1\u0159en\u00ed z\u00e1kladn\u00edch aritmetick\u00fdch [[operace (matematika)|operac\u00ed]] a roz\u0161i\u0159ov\u00e1n\u00ed \u010d\u00edseln\u00e9ho oboru p\u0159es \u010d\u00edsla [[cel\u00e9 \u010d\u00edslo|cel\u00e1]], [[racion\u00e1ln\u00ed \u010d\u00edslo|racion\u00e1ln\u00ed]], [[re\u00e1ln\u00e9 \u010d\u00edslo|re\u00e1ln\u00e1]] a&amp;nbsp;[[komplexn\u00ed \u010d\u00edslo|komplexn\u00ed]] a\u017e k&amp;nbsp;r\u016fzn\u00fdm specializovan\u00fdm \u010d\u00edseln\u00fdm obor\u016fm jako jsou [[hyperkomplexn\u00ed \u010d\u00edslo|hyperkomplexn\u00ed \u010d\u00edsla]], [[kvaternion]]y, [[oktonion]]y, [[ordin\u00e1ln\u00ed \u010d\u00edslo|ordin\u00e1ln\u00ed]] a [[kardin\u00e1ln\u00ed \u010d\u00edslo|kardin\u00e1ln\u00ed \u010d\u00edsla]] nebo [[Nadre\u00e1ln\u00e9 \u010d\u00edslo|surre\u00e1ln\u00e1 \u010d\u00edsla]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">I&amp;nbsp;v&amp;nbsp;[[teorie \u010d\u00edsel|teorii p\u0159irozen\u00fdch \u010d\u00edsel]] z\u016fst\u00e1v\u00e1 dosud mnoho snadno formulovateln\u00fdch otev\u0159en\u00fdch [[probl\u00e9m (matematika)|probl\u00e9m\u016f]], nap\u0159. [[Prvo\u010d\u00edseln\u00e1 dvojice|hypot\u00e9za prvo\u010d\u00edseln\u00fdch dvojic]] nebo [[Goldbachova hypot\u00e9za]]. Z\u0159ejm\u011b nejslavn\u011bj\u0161\u00ed probl\u00e9m cel\u00e9 matematiky, [[velk\u00e1 Fermatova v\u011bta]], byl vy\u0159e\u0161en v&amp;nbsp;roce [</ins>[<ins class=\"diffchange diffchange-inline\">1995]] po 350&amp;nbsp;letech marn\u00fdch pokus\u016f.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin</ins>: <ins class=\"diffchange diffchange-inline\">auto;\" cellspacing=\"20\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| &lt;math&gt;1; 2; 3\\,\\!&lt;/math&gt; || &lt;math&gt;-2; -1; 0; 1; 2\\,\\!&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt; || &lt;math&gt;-2; \\frac{2}{3}; 1{,}21\\,\\!&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt; || &lt;math&gt;-e; \\sqrt{2}; 3; \\pi\\,\\!&lt;/math&gt; || &lt;math&gt;2; i; -2+3i; 2e^{i\\frac{4\\pi}{3}}\\,\\!&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[P\u0159irozen\u00e9 \u010d\u00edslo|P\u0159irozen\u00e1 \u010d\u00edsla]]||[[Cel\u00e9 \u010d\u00edslo|Cel\u00e1 \u010d\u00edsla]] ||[[Racion\u00e1ln\u00ed \u010d\u00edslo|Racion\u00e1ln\u00ed \u010d\u00edsla]]||[[Re\u00e1ln\u00e9 \u010d\u00edslo|Re\u00e1ln\u00e1 \u010d\u00edsla]] ||[[Komplexn\u00ed \u010d\u00edslo|Komplexn\u00ed \u010d\u00edsla]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Struktura ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Mnoho matematick\u00fdch objekt\u016f jako [[mno\u017eina|mno\u017einy]] \u010d\u00edsel \u010di [[funkce (matematika)|funkc\u00ed]] vykazuj\u00ed jistou vnit\u0159n\u00ed strukturu. Abstrahov\u00e1n\u00edm n\u011bkter\u00fdch z&amp;nbsp;t\u011bchto struktur\u00e1ln\u00edch vlastnost\u00ed vznikly pojmy [[grupa]] (skupina), [[okruh (algebra)|okruh]], [[t\u011bleso (algebra)|t\u011bleso]] a dal\u0161\u00ed. Studiem t\u011bchto abstraktn\u00edch koncept\u016f se zab\u00fdv\u00e1 [[algebra]]</ins>. <ins class=\"diffchange diffchange-inline\">Jej\u00ed d\u016fle\u017eitou sou\u010d\u00e1st\u00ed je [[line\u00e1rn\u00ed algebra]], kter\u00e1 se zab\u00fdv\u00e1 studiem [[vektorov\u00fd prostor|vektorov\u00fdch prostor\u016f]], je\u017e v&amp;nbsp;sob\u011b kombinuj\u00ed t\u0159i ze \u010dty\u0159 okruh\u016f z\u00e1jmu matematiky \u2013 kvantitu, strukturu a prostor. Diferenci\u00e1ln\u00ed a integr\u00e1ln\u00ed po\u010det p\u0159id\u00e1v\u00e1 k&amp;nbsp;t\u011bmto t\u0159em okruh\u016fm i&amp;nbsp;\u010dtvrt\u00fd \u2013 zm\u011bnu</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Soubor:Elliptic curve simple.png|96px]] || [[Soubor:Rubik's cube.svg|96px]] || [[Soubor:Group diagdram D6.svg|96px]] || [[Soubor:Lattice of the divisibility of 60.svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Teorie \u010d\u00edsel]] || [[Algebra]] || [[Teorie grup]] || [[Teorie uspo\u0159\u00e1d\u00e1n\u00ed]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Prostor ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Studium prostoru za\u010d\u00edn\u00e1 v&amp;nbsp;matematice ji\u017e ve [[starov\u011bk]]u [[geometrie|geometri\u00ed]] \u2013&amp;nbsp;konkr\u00e9tn\u011b [[Eukleidovsk\u00e1 geometrie|euklidovskou]]. [[Trigonometrie]] p\u0159ib\u00edr\u00e1 do hry fenom\u00e9n kvantity. Z\u00e1kladn\u00edm tvrzen\u00edm t\u00e9to kvantitativn\u00ed geometrie je [[Pythagorova v\u011bta]]. V&amp;nbsp;pozd\u011bj\u0161\u00edch dob\u00e1ch doch\u00e1z\u00ed k&amp;nbsp;zobec\u0148ov\u00e1n\u00ed sm\u011brem k&amp;nbsp;[[Dimenze vektorov\u00e9ho prostoru|v\u00edcedimenzion\u00e1ln\u00edm]] prostor\u016fm, [[Neeukleidovsk\u00e1 geometrie|neeuklidovsk\u00fdm geometri\u00edm]] a&amp;nbsp;[[topologie|topologii]]. Uva\u017eov\u00e1n\u00edm v&amp;nbsp;kvantitativn\u00edch sf\u00e9r\u00e1ch se dost\u00e1v\u00e1me k&amp;nbsp;[[analytick\u00e1 geometrie|analytick\u00e9]], [[diferenci\u00e1ln\u00ed geometrie|diferenci\u00e1ln\u00ed]] a&amp;nbsp;[[algebraick\u00e1 geometrie|algebraick\u00e9 geometrii]]. Diferenci\u00e1ln\u00ed geometrie se zab\u00fdv\u00e1 studiem hladk\u00fdch [[k\u0159ivka|k\u0159ivek]] a&amp;nbsp;[[varieta (matematika)|ploch]] v&amp;nbsp;prostoru, algebraick\u00e1 pak geometrickou reprezentac\u00ed mno\u017ein [[Ko\u0159en polynomu|ko\u0159en\u016f]] [[polynom]]\u016f v\u00edce [[prom\u011bnn\u00e1|prom\u011bnn\u00fdch]]. [[Topologick\u00e1 grupa|Topologick\u00e9 grupy]] v&amp;nbsp;sob\u011b kombinuj\u00ed fenom\u00e9ny prostoru a&amp;nbsp;struktury, [[Lieova grupa|Lieovy grupy]] p\u0159id\u00e1vaj\u00ed nav\u00edc je\u0161t\u011b zm\u011bnu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Soubor:Illustration to Euclid's proof of the Pythagorean theorem.svg|96px]] || [[Soubor:Sine cosine plot.svg|96px]] || [[Soubor:Hyperbolic triangle.svg|96px]] || [[Soubor:Torus.png|96px]] || [[Soubor:Koch curve.svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[Geometrie]] || [[Trigonometrie]] || [[Diferenci\u00e1ln\u00ed geometrie]] || [[Topologie]] || [[Frakt\u00e1l|Frakt\u00e1ln\u00ed geometrie]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Zm\u011bna ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Pochopen\u00ed a popis zm\u011bny je z\u00e1kladn\u00ed snahou [[p\u0159\u00edrodn\u00ed v\u011bdy|p\u0159\u00edrodn\u00edch v\u011bd]]. Mocn\u00fdm n\u00e1strojem k&amp;nbsp;uchopen\u00ed fenom\u00e9nu zm\u011bny je kalkulus [[matematick\u00e1 anal\u00fdza|matematick\u00e9 anal\u00fdzy]], kter\u00fd vyu\u017e\u00edv\u00e1 konceptu [[funkce (matematika)|funkce]]. Studiem funkc\u00ed na oboru [[re\u00e1ln\u00e9 \u010d\u00edslo|re\u00e1ln\u00fdch \u010d\u00edsel]] se zab\u00fdv\u00e1 [[re\u00e1ln\u00e1 anal\u00fdza]], obdobnou discipl\u00ednou pro [[komplexn\u00ed \u010d\u00edslo|komplexn\u00ed]] p\u0159\u00edpad je [[komplexn\u00ed anal\u00fdza]]. Jej\u00ed sou\u010d\u00e1st\u00ed je pravd\u011bpodobn\u011b nejslavn\u011bj\u0161\u00ed i&amp;nbsp;nejt\u011b\u017e\u0161\u00ed nevy\u0159e\u0161en\u00fd probl\u00e9m sou\u010dasn\u00e9 matematiky \u2013 [[Riemannova hypot\u00e9za]]. [[Funkcion\u00e1ln\u00ed anal\u00fdza]] se zab\u00fdv\u00e1 studiem p\u0159irozen\u011b vznikaj\u00edc\u00edch prostor\u016f funkc\u00ed, jednou z&amp;nbsp;mnoha aplikac\u00ed tohoto oboru je [[kvantov\u00e1 mechanika]]. Pomoc\u00ed [[diferenci\u00e1ln\u00ed rovnice|diferenci\u00e1ln\u00edch rovnic]] je mo\u017en\u00e9 studovat problematiku zm\u011bn kvantitativn\u00edch veli\u010din. Vysoce slo\u017eit\u00e9 p\u0159\u00edrodn\u00ed syst\u00e9my slou\u017e\u00ed jako inspirace pro studium [[dynamick\u00e9 syst\u00e9my|dynamick\u00fdch syst\u00e9m\u016f]] a&amp;nbsp;[[teorie chaosu]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"20\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Soubor:Integral as region under curve.svg|96px]]\u00a0 || [[Soubor:Vector field.svg|96px]] || [[Soubor:Airflow-Obstructed-Duct.png|96px]] || [[Soubor</ins>:<ins class=\"diffchange diffchange-inline\">Limitcycle.svg|96px]] || [[Soubor</ins>:<ins class=\"diffchange diffchange-inline\">Lorenz attractor.svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Matematick\u00e1 anal\u00fdza]] ||[[Tenzorov\u00fd po\u010det|Vektorov\u00fd po\u010det]]||[[Diferenci\u00e1ln\u00ed rovnice]] || [[Dynamick\u00e9 syst\u00e9my]] || [[Teorie chaosu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Z\u00e1klady matematiky a filozofie ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Ve snaze objasnit a zp\u0159esnit z\u00e1kladn\u00ed kameny matematiky byly na konci [[19. stolet\u00ed|19.&amp;nbsp;stolet\u00ed]] polo\u017eeny z\u00e1klady discipl\u00edn\u00e1m [[teorie mno\u017ein]] a [[matematick\u00e1 logika|matematick\u00e9 logiky]], je\u017e b\u00fdvaj\u00ed souhrnn\u011b ozna\u010dov\u00e1ny jako [[z\u00e1klady matematiky]]. Na pomez\u00ed z\u00e1klad\u016f matematiky a abstraktn\u00ed [[algebra|algebry]] le\u017e\u00ed [[teorie kategori\u00ed]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Matematick\u00e1 logika poskytuje pevn\u00fd [[axiom]]atick\u00fd r\u00e1mec cel\u00e9 matematice a svoj\u00ed maxim\u00e1ln\u00ed p\u0159esnost\u00ed za\u0161ti\u0165uje nezpochybnitelnost v\u0161ech matematick\u00fdch v\u00fdsledk\u016f. [[Teorie d\u016fkazu]] precizuje a matematizuje z\u00e1kladn\u00ed principy rozumov\u00e9ho odvozov\u00e1n\u00ed a nutn\u00e9ho vypl\u00fdv\u00e1n\u00ed. [[Teorie model\u016f]] studuje logick\u00e9 koncepty pomoc\u00ed algebraick\u00fdch metod. Form\u00e1ln\u00ed studium aritmetick\u00fdch teori\u00ed jako jsou [[Robinsonova aritmetika|Robinsonova]] \u010di [[Peanova aritmetika]] m\u00e1 velk\u00fd v\u00fdznam i&amp;nbsp;pro [[Filozofie|filozofick\u00e9]] </ins>ot\u00e1zky <ins class=\"diffchange diffchange-inline\">t\u00fdkaj\u00edc\u00ed se hranic [[dedukce|deduktivn\u00ed]] metody. Odpov\u011bd\u00ed na v\u011bt\u0161inu t\u011bchto ot\u00e1zek je nejslavn\u011bj\u0161\u00ed v\u00fdsledek cel\u00e9 [[logika|logiky]] \u2013&amp;nbsp;[[G\u00f6delovy v\u011bty </ins>o<ins class=\"diffchange diffchange-inline\">&amp;nbsp;ne\u00faplnosti</ins>]<ins class=\"diffchange diffchange-inline\">]. [[Teorie rekurze]] m\u00e1 velk\u00fd v\u00fdznam pro teoretick\u00e9 z\u00e1klady [[Informa\u010dn\u00ed v\u011bda|informatiky]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Teorie mno\u017ein je \u010dasto ozna\u010dov\u00e1na jako \u201esv\u011bt matematiky\u201c. Ka\u017ed\u00e1 jin\u00e1 matematick\u00e1 discipl\u00edna m\u016f\u017ee b\u00fdt pova\u017eov\u00e1na za sou\u010d\u00e1st teorie mno\u017ein. Krom\u011b toho m\u00e1 teorie mno\u017ein vlastn\u00ed obor studia zam\u011b\u0159en\u00fd z&amp;nbsp;v\u011bt\u0161\u00ed \u010d\u00e1sti na pochopen\u00ed a&amp;nbsp;popis fenom\u00e9nu [[nekone\u010dno|nekone\u010dna]] v&amp;nbsp;jeho aktu\u00e1ln\u00ed podob\u011b. Slavn\u00fdm probl\u00e9mem teorie mno\u017ein byla [[hypot\u00e9za kontinua]], filozofick\u00e9 dopady m\u00e1 ot\u00e1zka [</ins>[<ins class=\"diffchange diffchange-inline\">axiom v\u00fdb\u011bru|axiomu v\u00fdb\u011bru]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin</ins>: <ins class=\"diffchange diffchange-inline\">auto;\" cellspacing=\"15\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| &lt;math&gt; P \\Rightarrow Q \\,&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt;|| [[Soubor:Venn A intersect B.svg|128px]] || [[Soubor:Commutative diagram for morphism.svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Matematick\u00e1 logika]] || [[Teorie mno\u017ein]] || [[Teorie kategori\u00ed]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Diskr\u00e9tn\u00ed matematika ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Jako [[diskr\u00e9tn\u00ed matematika]] se ozna\u010duj\u00ed oblasti matematiky, kter\u00e9 se zab\u00fdvaj\u00ed studiem kone\u010dn\u00fdch diskr\u00e9tn\u00edch syst\u00e9m\u016f. Jej\u00ed podobory maj\u00ed obvykle velk\u00fd praktick\u00fd v\u00fdznam v&amp;nbsp;[[Informatika|informatice]] a [[programov\u00e1n\u00ed]]. Pat\u0159\u00ed sem discipl\u00edny jako [[teorie slo\u017eitosti]], [[teorie informace]] nebo studium teoretick\u00fdch model\u016f [[po\u010d\u00edta\u010d]]\u016f, jak\u00fdm je [[Turing\u016fv stroj]]. Teorie v\u00fdpo\u010detn\u00ed slo\u017eitosti se zab\u00fdv\u00e1 \u010dasovou n\u00e1ro\u010dnost\u00ed [[algoritmus|algoritm\u016f]] zpracov\u00e1van\u00fdch v&amp;nbsp;po\u010d\u00edta\u010d\u00edch, teorie informace mo\u017enostmi efektivn\u00edho skladov\u00e1n\u00ed informac\u00ed na z\u00e1znamov\u00fdch m\u00e9di\u00edch \u2013&amp;nbsp;studuje pojmy [[komprese dat]], [[entropie]] apod. Nejslavn\u011bj\u0161\u00edm probl\u00e9mem t\u011bchto discipl\u00edn je \u201e[[Probl\u00e9m P versus NP|probl\u00e9m P = NP]]\u201c. Dal\u0161\u00edmi sou\u010d\u00e1stmi diskr\u00e9tn\u00ed matematiky jsou [[kombinatorika]], [[teorie graf\u016f]] nebo [[kryptografie]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| &lt;math&gt;\\begin{matrix} (1,2,3) &amp; (1,3,2) \\\\ (2,1,3) &amp; (2,3,1) \\\\ (3,1,2) &amp; (3,2,1) \\end{matrix}&lt;</ins>/<ins class=\"diffchange diffchange-inline\">math&gt; || [[Soubor:DFAexample.svg|96px]] || [[Soubor:Caesar3</ins>.<ins class=\"diffchange diffchange-inline\">svg|96px]] || [[Soubor:6n-graf</ins>.<ins class=\"diffchange diffchange-inline\">svg|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Kombinatorika]] || [[Teorie v\u00fdpo\u010dt\u016f]] || [[Kryptografie]] || [[Teorie graf\u016f]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Aplikovan\u00e1 matematika ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Aplikovan\u00e1 matematika]] pou\u017e\u00edv\u00e1 abstraktn\u00ed matematick\u00e9 n\u00e1stroje k&amp;nbsp;\u0159e\u0161en\u00ed praktick\u00fdch probl\u00e9m\u016f z&amp;nbsp;jin\u00fdch oblast\u00ed v\u011bdy, [[obchod]]u apod. [[Statistika]] pou\u017e\u00edv\u00e1 [[teorie pravd\u011bpodobnosti|teorii pravd\u011bpodobnosti]] k&amp;nbsp;popisu, anal\u00fdze a p\u0159edpov\u00edd\u00e1n\u00ed jev\u016f, v&amp;nbsp;nich\u017e hraje d\u016fle\u017eitou roli [[n\u00e1hoda]]. [[Numerick\u00e1 matematika]] vytv\u00e1\u0159\u00ed a teoreticky za\u0161ti\u0165uje po\u010d\u00edta\u010dov\u00e9 v\u00fdpo\u010detn\u00ed metody pro \u0159e\u0161en\u00ed \u0161irok\u00e9ho spektra \u00faloh p\u0159\u00edli\u0161 n\u00e1ro\u010dn\u00fdch pro \u010dlov\u011bka. Vyu\u017e\u00edv\u00e1 ji [[po\u010d\u00edta\u010dov\u00e9 modelov\u00e1n\u00ed]] s&amp;nbsp;mnoha aplikacemi p\u0159i popisu a p\u0159edpov\u011bdi [[fyzika|fyzik\u00e1ln\u00edch]], [[meteorologie|meteorologick\u00fdch]], [[sociologie|sociologick\u00fdch]], [[chemie|chemick\u00fdch]] a jin\u00fdch jev\u016f. Ve sv\u011bt\u011b obchodu a [[bankovnictv\u00ed]] hraje d\u016fle\u017eitou roli [[finan\u010dn\u00ed matematika]]. K&amp;nbsp;popisu [[ekonomie|ekonomick\u00fdch]] fenom\u00e9n\u016f slou\u017e\u00ed \u010dasto jazyk a v\u00fdsledky [[teorie her]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:{| style=\"border:1px solid #ddd; text-align:center; margin: auto;\" cellspacing=\"15\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Soubor:Gravitation space source.png|96px]] || [[Soubor:BernoullisLawDerivationDiagram.png|96px]] || [[Soubor:Composite trapezoidal rule illustration small.png|96px]] || [[Soubor:Maximum boxed.png|96px]] || [[Soubor:Two red dice 01.svg|96px]] || [[Soubor:Oldfaithful3.png|96px]] || [[Soubor:Market Data Index NYA on 20050726 202628 UTC.png|96px]] || [[Soubor:Arbitrary-gametree-solved.png|96px]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|-</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| [[Matematick\u00e1 fyzika]] || [[Mechanika tekutin|Matematick\u00e9 modelov\u00e1n\u00ed tekutin]] || [[Numerick\u00e1 matematika]] || [[Optimalizace (matematika)|Optimalizace]] || [[Teorie pravd\u011bpodobnosti]] || [[Statistika]] || [[Finan\u010dn\u00ed matematika]] || [[Teorie her]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Odkazy ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Reference ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;references </ins>/<ins class=\"diffchange diffchange-inline\">&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Literatura ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Citace elektronick\u00e9 monografie</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | p\u0159\u00edjmen\u00ed = Pavl\u00edkov\u00e1 Pavla, Schmidt Oskar</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | titul = Z\u00e1klady matematiky, 1. vyd\u00e1n\u00ed</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | url = http:</ins>//<ins class=\"diffchange diffchange-inline\">vydavatelstvi</ins>.<ins class=\"diffchange diffchange-inline\">vscht</ins>.<ins class=\"diffchange diffchange-inline\">cz/knihy/uid_isbn-80-7080-615-X</ins>/<ins class=\"diffchange diffchange-inline\">pages</ins>-<ins class=\"diffchange diffchange-inline\">img/</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | datum vyd\u00e1n\u00ed = 2006</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | isbn = 80-7080-615-X</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | vydavatel = V\u0160CHT v Praze</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Citace monografie</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | p\u0159\u00edjmen\u00ed = Men\u0161\u00edk</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | jm\u00e9no = Miroslav</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | titul = Matematika a geometrie pro technickou praxi</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | url = </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | m\u00edsto = Praha</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | rok = 1945</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | po\u010det stran = 329</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"> | vydavatel = \u00dastav pro u\u010debn\u00e9 pom\u016fcky pr\u016fmyslov\u00fdch a odborn\u00fdch \u0161kol</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Souvisej\u00edc\u00ed \u010dl\u00e1nky ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Exaktn\u00ed]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Logika]</ins>]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Fyzika]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Informa\u010dn\u00ed v\u011bda]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Matematik]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Extern\u00ed odkazy ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Commonscat|Mathematics}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Otto|heslo=Mathematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Wikicit\u00e1ty|t\u00e9ma=Matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Wikislovn\u00edk|heslo=matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* {{Wikiknihy|kniha=Kategorie:Matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* [https://<ins class=\"diffchange diffchange-inline\">mathworld</ins>.<ins class=\"diffchange diffchange-inline\">wolfram</ins>.<ins class=\"diffchange diffchange-inline\">com/ Wolfram MathWorld] \u2013 matematick\u00e1 encyklopedie (anglicky)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [https:</ins>//<ins class=\"diffchange diffchange-inline\">isibalo.com</ins>/<ins class=\"diffchange diffchange-inline\">matematika Isibalo</ins>] <ins class=\"diffchange diffchange-inline\">\u2013 matematick\u00fd vzd\u011bl\u00e1vac\u00ed videoport\u00e1l</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* [https://<ins class=\"diffchange diffchange-inline\">cs</ins>.<ins class=\"diffchange diffchange-inline\">khanacademy</ins>.org/<ins class=\"diffchange diffchange-inline\">math Matematika na Khan Academy]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Polozam\u010deno}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Autoritn\u00ed data}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Port\u00e1ly|Matematika}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{1000 nejd\u016fle\u017eit\u011bj\u0161\u00edch \u010dl\u00e1nk\u016f}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorie:Matematika| ]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorie:P\u0159\u00edrodn\u00ed v\u011bdy]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorie</ins>:<ins class=\"diffchange diffchange-inline\">Studijn\u00ed p\u0159edm\u011bty]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Kategorie</ins>:<ins class=\"diffchange diffchange-inline\">Form\u00e1ln\u00ed v\u011bdy]</ins>]</div></td></tr>\n"
    }
}